

ASCE 41-17 Tier 1 and Tier 2 Seismic Evaluation Report Rossmoor Buildings:

600 Terra California Drive, Walnut Creek, CA 1605 Ptarmigan Drive, Walnut Creek, CA 1995 Cactus Ct., Walnut Creek, CA 2516 Ptarmigan Drive, Walnut Creek, CA 3101 Terra Granada Drive, Walnut Creek, CA

Prepared for: Clayton Clark

TWCM Building Maintenance Manager 800 Rockview Drive Walnut Creek, CA 94595

December 12, 2022

Oakland | Portland | ida-se.com

IDA Job No. 22054

Table of Contents

Introduction1								
Site Information2								
General2								
Geotechnical and Seismic Hazard Information2								
Building Information2								
Existing Building Information and Site Observations2								
Conclusions								
Building 1 – 600 Terra California Drive4								
1 General5								
2 Tier 1 Structural Deficiencies5								
2.1 Surface Fault Rupture5								
2.2 Narrow Shear Walls6								
2.3 Interconnection ties and holdown anchors6								
3 Tier 2 Analysis								
3.1 Narrow Shear walls6								
4 Mitigation7								
4.1 Interconnection ties and holdown anchors7								
5 Conclusion7								
Figure 18								
Deficiencies and Mitigations9								
Building 2 – 1605 Ptarmigan Drive, Walnut Creek, CA 11								
1 General								
2 Tier 1 Structural Deficiencies								
2.1 Surface Fault Rupture								
2.2 Interconnection ties and holdown anchors								
2.3 Redundancy Error! Bookmark not defined.								
2.4 Shear stress check in walls 11								
3 Tier 2 Analysis								
3.1 Shear stress check in walls 12								
Oakland Portland ida-se.com								

4	I	Mitigation	12
	4.1	.1 Redundancy	12
	4.2	.2 Shear stress check in walls	12
	4.3	.3 Interconnection ties and holdown anchors	12
5	(Conclusion	13
Fi	gur	ure 2	16
D	efic	ficiencies and Mitigations	17
В	uilo	lding 3 –1995 Cactus Ct, Walnut Creek, CA	20
1	(General	217
2	-	Tier 1 Structural Deficiencies	17
	2.1	.1 Surface Fault Rupture	217
	2.2	.2 Narrow Shear Walls	217
	2.3	.3 Interconnection ties and holdown anchors	217
3	-	Tier 2 Analysis	18
	3.1	.1 Narrow Shear walls	18
4	I	Mitigation	22
	4.1	.1 Interconnection ties and holdown anchors	22
5	(Conclusion	22
Fi	gur	ure 3	24
D	efic	ficiencies and Mitigations	25
В	uilc	lding 4 –2516 Ptarmigan Drive, Walnut Creek, CA	23
1	(General	23
2	-	Tier 1 Structural Deficiencies	23
	2.1	.1 Interconnection ties and holdown anchors	23
3	-	Tier 2 Analysis	23
4	I	Mitigation	30
	4.1	.1 Interconnection ties and holdown anchors	30
5	(Conclusion	30
Fi	gur	ure 4	31
		ficiencies and Mitigations	
		Oakland Portland ida-se.com	

Building	Building 5 –3101 Terra Granada Drive, Walnut Creek, CA							
1 Gene	General							
2 Tier 1	1 Structural Deficiencies	36						
2.1 l	Interconnection ties and holdown anchors	36						
2.2 L	Let-In Diagonal Bracing	36						
3 Tier 2	2 Analysis	37						
4 Mitig	ation	37						
4.1 l	Interconnection ties and holdown anchors	37						
4.2 L	Let-In Bracing	37						
5 Conc	lusion	37						
Figure 5	3	31						
Deficienc	Deficiencies and Mitigations							
	X A BUILDING 1 600 TERRA CALIFORNIA DRIVE	12						
	APPENDIX B BUILDING 2 1605 PTARMIGAN DRIVE							
	APPENDIX C BUILDING 3 600 TERRA CALIFORNIA DRIVE							
	APPENDIX D BUILDING 4 1605 PTARMIGAN DRIVE							
APPENDI	APPENDIX E BUILDING 5 3101 TERRA GRANADA DRIVE98							

Introduction

Rossmoor is a senior living community located in Walnut Creek, California. The community was opened in 1964 and is comprised of variety of residential buildings ranging from multiunit buildings to single family buildings.

Per the request of Clayton Clark, Building Maintenance Manager, IDA Structural Engineers (IDA) has performed a seismic assessment of 5 buildings which are part of the Third Walnut Creek Mutual of Rossmoor. This is a voluntary review and based on current codes and ordinances, the existing lateral load resisting system does not require strengthening. The specific buildings were selected by Mr. Clark and are located at 600 Terra California, 1605 Ptarmigan Drive, 1995 Cactus Ct., 2516 Ptarmigan Drive and 3101 Terra Granada in Walnut Creek, California. The seismic assessment was performed using an ASCE 41-17 Tier 1 and Tier 2 procedure modified by ASCE 41-17, titled "Seismic Evaluation and Retrofit of Existing Buildings", published by the American Society of Civil Engineers (ASCE) in 2017. This document is the industry standard procedure for the seismic evaluation and retrofit of existing buildings.

A Tier 1 screening is a checklist-based procedure. The checklists identify potential deficiencies in a building based on performance of similar buildings in past earthquakes. The results from the Tier 1 screening forms the basis for the Tier 2 deficiency-based procedure. There was no nondestructive testing performed and observations were limited to visual observations only. The assessment was performed using original construction drawings provided by Mr. Clark.

The information below forms the foundation for the evaluation. This information is either derived from owner requirements, such as risk category and desired structural performance level, or is site specific, such as seismic hazard level.

Subject Property	Rossmoor TWCM 5 Buildings
Address	Building 1-600 Terra California Drive
	Building 2-1605 Ptarmigan Drive
	Building 3-1995 Cactus Ct.
	Building 4-2516 Ptarmigan Drive
	Building 5-3101 Terra Granada Drive
	Walnut Creek, California
Latitude and Longitude	37.8628606, -22.0655455
Risk Category	Π
Basic Performance Objective for	Collapse Prevention Structural Performance at BSE-2E
Existing Buildings (BPOE)	Life Safety Structural Performance at BSE-1E

For Tier 1 assessments of Risk Category II buildings, structural performance of Life Safety Structural performance for the BSE-1E hazard level is not explicitly checked. Conformance with the BSE-1E is implied through the structure meeting Collapse Prevention at the BSE-2E hazard. The BSE-1E and BSE-2E represent reduced earthquake hazards for evaluation of existing buildings. The BSE-1E represents and earthquake with a 20% probability of exceedance in 50 years (225 year return period) and the BSE-2E represents an earthquake with a 5% probability of exceedance in 50 years (975 year return period). For comparison, a new building would be designed with consideration of the MCE (Maximum Considered Earthquake) with a 2% exceedance in 50 years (2,475 year return period). A longer return period represents, a larger, rarer earthquake event. Seismic parameters are site specific and are determined from publicly available information from the United States Geological Survey (USGS). The Basic Performance Objective for Existing Buildings (BPOE) uses the BSE-1E with Life Safety Structural Performance Objective, and BSE-2E hazard levels with Collapse Prevention Performance Objective.

The ASCE 41 Tier 1 procedure consists of a series of checklists that quickly identifies deficiencies. Based on the Tier 1 results, a Tier 2 analysis is performed to more accurately analyze element demands and capacities identified as deficiencies in Tier 1.

Site Information

General

The buildings are located in Rossmoor, a senior living community located in Walnut Creek, California. The address of each building is noted in the discussion for each building.

Geotechnical and Seismic Hazard Information

No site-specific geotechnical data was available. Information used in the reports was found via publicly available USGS maps and information.

Building Information

All 5 buildings are multi-unit residential buildings. Per the record drawings, the buildings appear to have been constructed in 1970s. Detailed information for each building is provided in the specific building sections.

Existing Building Information and Site Observations

IDA performed a site visit on September 22, 2022. The site visit consisted of visual observations only, primarily from the outside of the buildings. No destructive testing or

localized demolition was performed. We had access to a part of structural set of record drawings which included structural plan and some details.

	Record Drawings Available							
Building 1	ing 1 600 Terra California Drive, Walnut Creek, CA							
	January 17, 1976							
Building 2	1605 Ptarmigan Drive, Walnut Creek, CA							
	January 4, 1971							
	Hayes, Smith, Trockey & Blair Architects and Planners AlA							
Building 3 1995 Cactus Ct., Walnut Creek, CA								
	November 16, 1973							
Building 4 2516 Ptarmigan Drive, Walnut Creek, CA								
	November 27, 1972							
Building 5	Building 5 3101 Terra Granada Drive, Walnut Creek, CA							
	June 23, 1967							

Conclusions

Seismic demands have increased, and detailing demands have become more stringent since the original construction of the buildings. Some construction methods which were acceptable at the time of construction would not be acceptable by current building standards for new construction. The purpose of an ASCE 41 assessment is not to assess the buildings to current building code standards for new buildings but to identify deficiencies of the building construction which may keep them from meeting the desired Structural Performance Levels. The specific deficiencies and mitigation recommendations are described in the sections for each specific building. The mitigation recommendations are conceptual. If a seismic strengthening for a building is desired, more detailed seismic analysis and construction documents can be prepared for permit submission and construction. IDA can prepare a fee proposal for these services upon request.

Thank you for the opportunity to be of service. Please do not hesitate to call with any questions regarding the analysis.

IDA Structural Engineers, Inc.

Amruta Chanabasanavar, P.E. Project Engineer Jason M. Lee, S.E. Principal

BUILDING 1 600 TERRA CALIFORNIA DRIVE

Building 1 – 600 Terra California Drive, Walnut Creek, CA

1 General

600 Terra California Drive is bounded by Terra California Drive to the North and east, Rossmoor Pkwy to the west and residential properties to the south.

The building is a 2-story wood framed building with plywood sheathing supported on wood trusses at the roof and joists at the floor. Those are supported on wood stud walls which are supported on shallow concrete foundations. Lateral resistance is provided by wood shear walls. Shear wall sheathing is 3/8" standard. These buildings are ASCE 41 Building Type W1A.


The roof is framed prefabricated trusses at 24" OC. The trusses are supported by bearing wall studs. Roof sheathing is 3/8" thick Douglas Fir plywood sheathing.

2 Tier 1 Structural Deficiencies

The following items were deficiencies identified as part or the Tier 1 assessment.

2.1 Surface Fault Rupture

The building site is in close proximity (within 2 miles) to the Calaveras Fault. See Figure 12. In the near field of active faults, there is a potential for large fissures and differential movement to occur in the surface soils. Foundations of buildings located above these ruptures are subjected to large differential movements that induce large forces in the building superstructure. These forces are concurrent with all existing gravity loads and seismic forces during an earthquake.

2.2 Narrow Shear Walls

Narrow shear walls are highly stressed and subject to severe deformations that reduce the capacity of the walls. Most of the damage occurs at the base and consists of sliding of the sill plate and deformation of hold-down anchors where present. As the deformation continues, the plywood pulls up on the sill plate, causing splitting. Splitting of the end studs at the bolted attachment of hold-down anchors is also common. The aspect ratio for wood walls is the story height to wall length.

2.3 Interconnection ties and holdown anchors

The shear walls do not have interconnection ties to transfer overturning forces through the floor. Shear walls in East-West direction do not have holdowns called out on the plans. Shear walls without holdown anchors may be subjected to significant overturning, and damage can be caused by uplift and racking of the shear walls. Hold down anchorage can help resist overturning forces and can greatly strengthen shear walls vs. walls without anchorage.

3 Tier 2 Analysis

The ASCE 41 Tier 1 procedure consists of a series of checklists that quickly identifies deficiencies. Based on the Tier 1 results, a Tier 2 analysis is performed to more accurately analyze element demands and capacities.

The following items are analyzed in greater detail under the Tier 2 procedure:

- Shear stress check in walls
- Narrow Shear Walls

Missing building elements causing Tier 1 deficiencies (such as redundancy, interconnection ties and holdowns) were not required to be analyzed under the Tier 2 procedure. These elements are required to meet the BPOE and need to be installed as part of any seismic rehabilitation.

3.1 Narrow Shear walls

Tier 2 analysis finds that the shear stress check is compliant without considering narrow shear walls to be a part of the lateral force resisting system.

4 Mitigation

4.1 Interconnection ties and holdown anchors

New straps can be added at shear walls to transfer overturning forces between floor to floor. Shear walls without hold downs should be retrofitted with hold down hardware and compression posts. New hold down hardware could be retrofitted at shear wall ends and anchor bolts would need to be epoxied into the existing foundations. Compression posts could be installed along with the hold down hardware as required. Foundation strengthening may be required if existing foundations are shallow or weak in local areas.

5 Conclusion

While the building has holdowns in the transverse loading direction, holdowns appear to be missing in the longitudinal loading direction. In some cases, the original designer of the building may have assumed there was sufficient dead load to resist overturning forces. Lower seismic forces at the time of design may have allowed for this design. However, wood shear walls without holdowns or ties between floors have reduced ductility and may be subject to overturning at excessive deflections. Seismic demands have increased, and detailing demands have become more stringent since the original construction. Therefor we conclude the building has an incomplete lateral force resisting system, which does not meet the requirements of ASCE 41-17 for the BPOE performance. Retrofitting these conditions are required to meet the Structural Performance Level of the BPOE.

ROSSMOOR TWCM SEISMIC STUDY ASCE 41-17 Tier 1 and Tier 2 Report

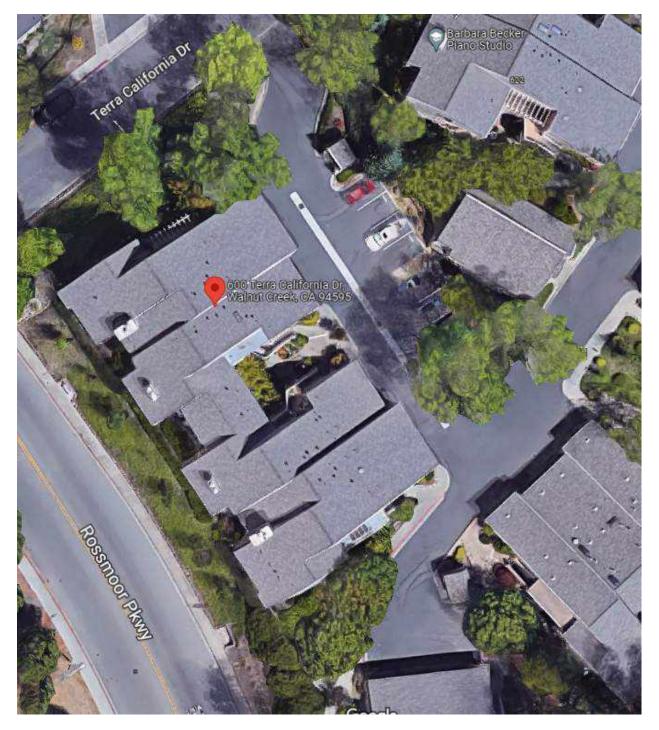
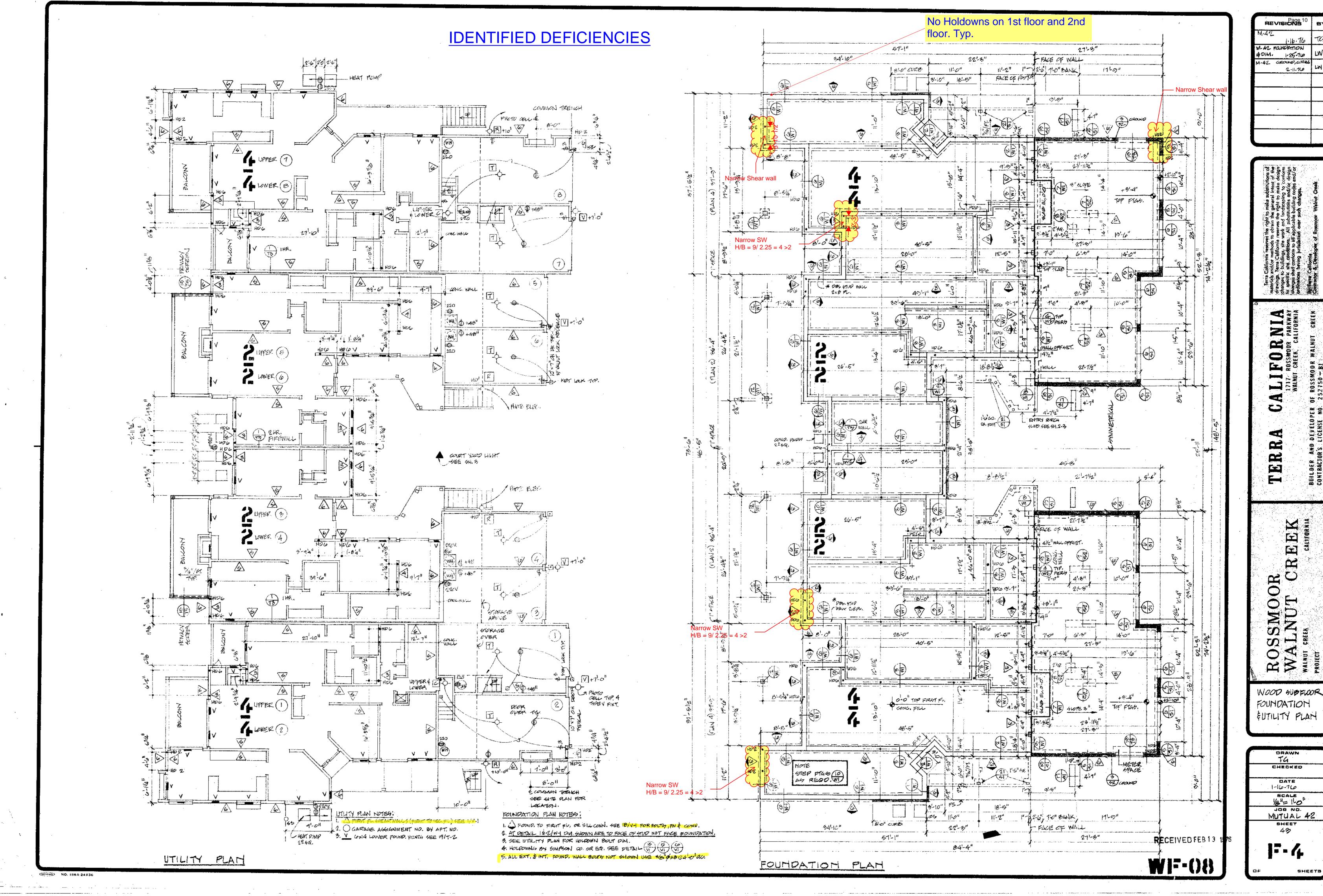
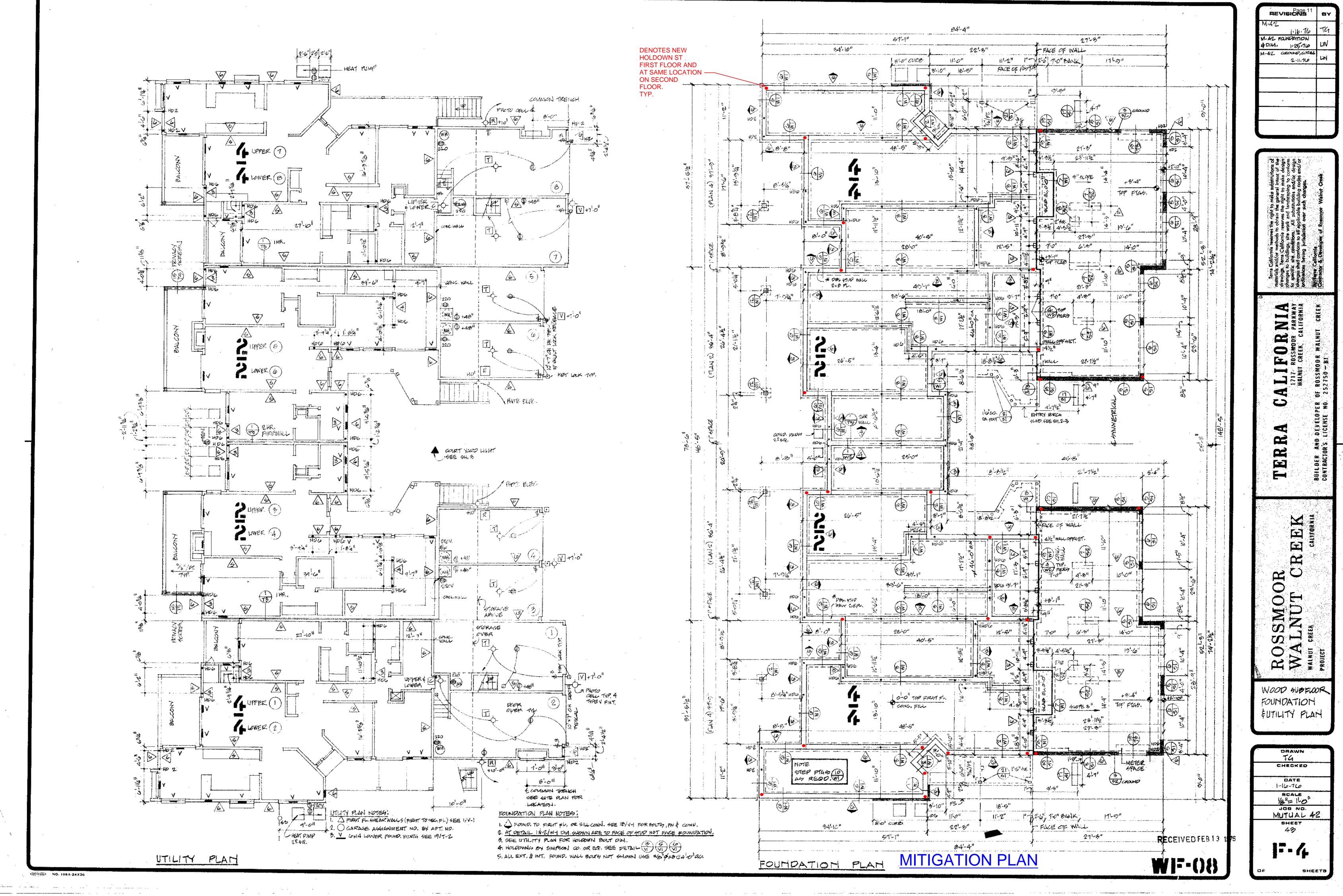




Figure 1. Site Location – 600 Terra California Drive

ROSSMOOR TWCM SEISMIC STUDY ASCE 41-17 Tier 1 and Tier 2 Report

Deficiencies and Mitigations

- .<u>—</u>.

BUILDING 2 1605 PTARMIGAN DRIVE

Building 2 – 1605 Ptarmigan Drive, Walnut Creek, CA

1 General

1605 Ptarmigan is bounded by Ptarmigan Drive to the north and residential properties to the east, west and south.

The building is a 2-story wood framed building with plywood sheathing supported on wood trusses at the roof. Those are supported on wood stud walls which are supported on shallow concrete foundations. The ground floor is concrete slab on grade. Lateral resistance is provided by wood shear walls. Shear wall sheathing is 3/8" standard. These buildings are ASCE 41 Building Type W1A.

The roof is framed prefabricated trusses at 24" OC. The trusses are supported by bearing wall studs. Roof sheathing is 3/8" thick Douglas Fir plywood sheathing.

2 Tier 1 Structural Deficiencies

The following items were deficiencies identified as part or the Tier 1 assessment.

2.1 Surface Fault Rupture

The building site is in close proximity (within 2 miles) to the Calaveras Fault. See Figure 12. In the near field of active faults, there is a potential for large fissures and differential movement to occur in the surface soils. Foundations of buildings located above these ruptures are subjected to large differential movements that induce large forces in the building superstructure. These forces are concurrent with all existing gravity loads and seismic forces during an earthquake.

2.2 Interconnection ties and holdown anchors

The shear walls do not have interconnection ties to transfer overturning forces through the floor. Shear walls in East-West direction do not have holdowns called out on the plans. Shear walls without holdown anchors may be subjected to significant overturning, and damage can be caused by uplift and racking of the shear walls. Hold down anchorage can help resist overturning forces and can greatly strengthen shear walls vs. walls without anchorage.

2.3 Shear stress check in walls

ASCE 41 provides a quick check to assess the strength of the lateral force resisting system. The potential seismic demands on the shear walls exceed the capacities of the wood shear walls and is further evaluated in Tier 2 analysis.

3 Tier 2 Analysis

The ASCE 41 Tier 1 procedure consists of a series of checklists that quickly identifies deficiencies. Based on the Tier 1 results, a Tier 2 analysis is performed to more accurately analyze element demands and capacities.

The following items are analyzed in greater detail under the Tier 2 procedure:

- Shear stress check in walls
- Narrow Shear Walls

Missing building elements causing Tier 1 deficiencies (such as redundancy, interconnection ties and holdowns) were not required to be analyzed under the Tier 2 procedure. These elements are required to meet the BPOE and need to be installed as part of any seismic rehabilitation.

3.1 Shear stress check in walls

This building has a redundancy of lateral force resisting system in both the unit plans. Tier 2 evaluation of the shear walls finds that the shear stress checks are not compliant. The shear stresses in some walls exceed the assumed capacity of the walls. The wall lines which require strengthening are identified in the mitigation plan.

4 Mitigation

4.1 Redundancy

The most prudent retrofit strategy for a building without redundancy is to add new seismic force resisting elements. New shear walls may be added. Other mitigations include adding sheathing to interior and exterior walls and adding or prefabricated shear resisting elements.

4.2 Shear stress check in walls

At existing plywood shear walls, new plywood sheathing should be added to the opposite side of the walls (creating double sided plywood shear walls) so that shear capacity is significantly increased.

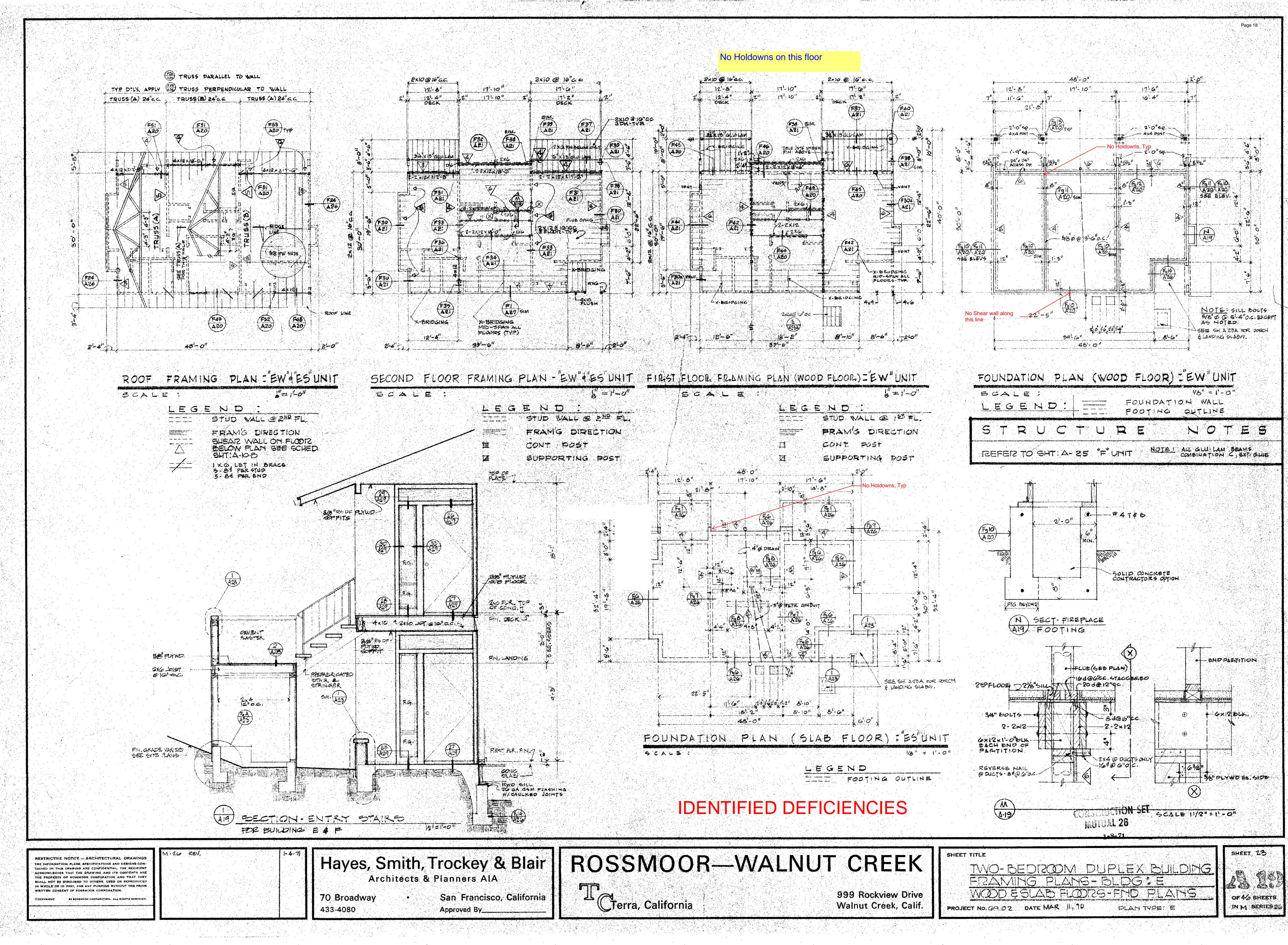
4.3 Interconnection ties and holdown anchors

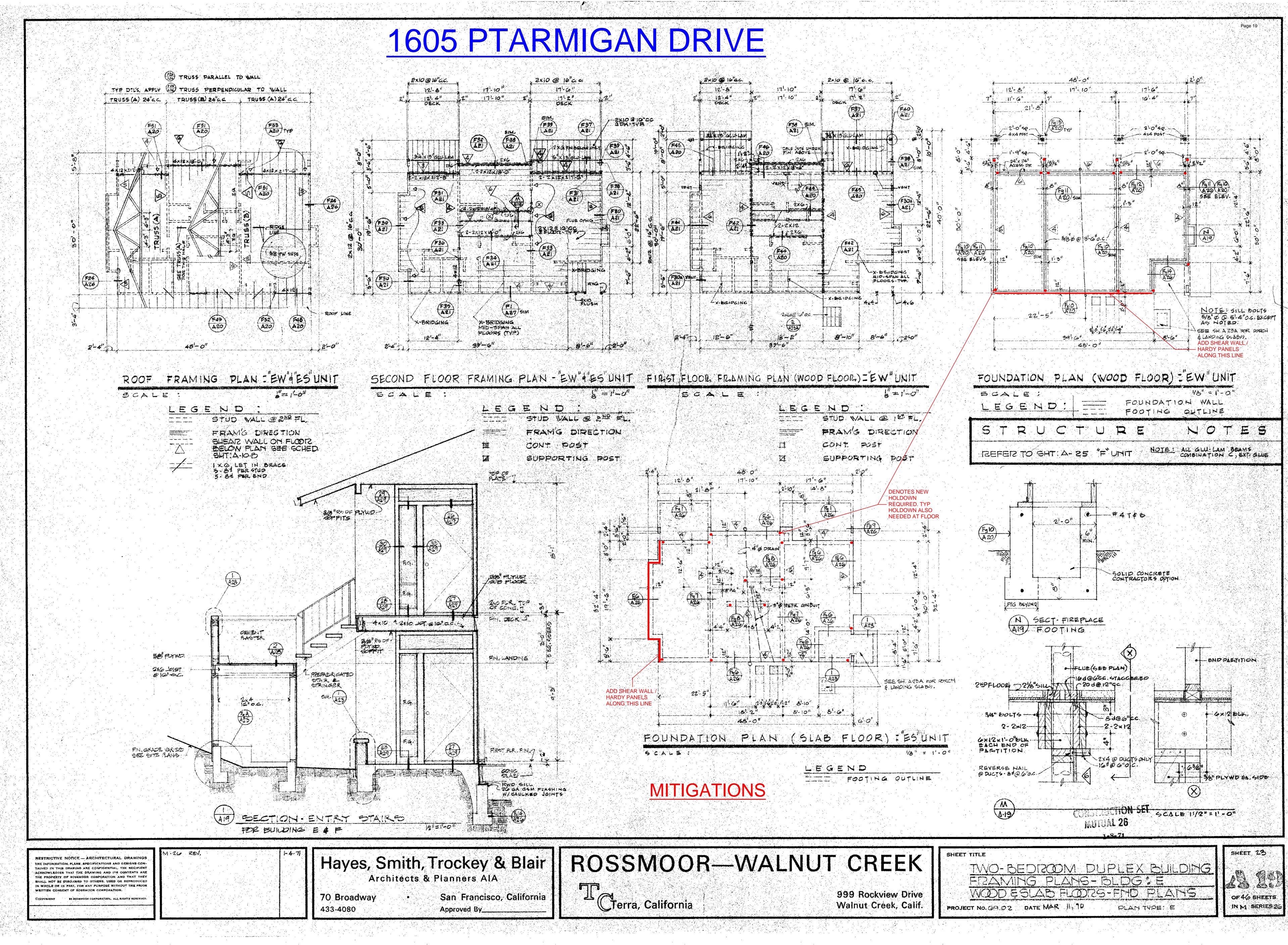
Shear walls without hold downs should be retrofitted with hold down hardware and compression posts. New hold down hardware could be retrofitted at shear wall ends and anchor bolts would need to be epoxied into the existing foundations. Compression posts could be installed along with the hold down hardware as required. Foundation

strengthening may be required if existing foundations are shallow or weak in local areas.

5 Conclusion

While the building has holdowns in the transverse loading direction, holdowns appear to be missing in the longitudinal loading direction. In some cases, the original designer of the building may have assumed there was sufficient dead load to resist overturning forces. Lower seismic forces at the time of design may have allowed for this design. However, wood shear walls without holdowns or ties between floors have reduced ductility and may be subject to overturning at excessive deflections. Seismic demands have increased, and detailing demands have become more stringent since the original construction. Additionally, we recommend the addition of lateral load resisting elements to address the lack of redundancy.


With the lack of redundancy, and insufficient tiedowns we recommend retrofitting these conditions to meet the Structural Performance Level of the BPOE.


Figure 2. Site Location – 1605 Ptarmigan Drive

See Deficiencies and mitigations on next pages

DEFICIENCIES AND MITIGATIONS

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
SHEET TITLE				
TWO	-BED	1500M	DU	PLE)
FRA	MING	PLAN	16 - E	5LDC
WOD	DĘSL	AB FLC	DD29	-FND
PROJECT No. 69	.Ø2 DAT	E MAR III	10	PLAP

· · .	5	C /	x [E		: .		 .)				
	١	E	G	E	M	5		. 			:	FO
									نبت يہم			FC
	C		•	\mathbf{r}	1	1	~	**	a ().	1 1		3
		1			<u> </u>							•
· · ·										4_*		
	::IC	EF	215	ТО	6		; А-	2	5	· -	UP.	111

<u></u>				• • •		
SHEE	TTITLE					
an an an an Anna 1995 - Anna Anna 1996 - Anna Anna Anna	TWO-	BED	1200	MI	DUF	
	FRA	VING	PL/	ANS	- 6	
	WODE) ĘSL	ABF		- 25	FHC
PROJ	ECT NO. 69.(22 DAT	EMAR	11,70		PLAP

BUILDING 3 1995 CACTUS COURT

Building 3 –1995 Cactus Ct, Walnut Creek, CA

1 General

1995 Cactus Ct is bounded by Cactus Ct on the north and west and open area on the east and south.

The building is a 2-story wood framed building with plywood sheathing supported on wood trusses at the roof and floor framing of 9-1/4" 16" Super C Joists @ 24" OC. Those are supported on wood stud walls which are supported on shallow concrete foundations. Lateral resistance is provided by wood shear walls. Shear wall sheathing is 3/8" standard. These buildings are ASCE 41 Building Type W1A.

The roof is framed prefabricated trusses at 24" OC. The trusses are supported by bearing wall studs. Roof sheathing is 3/8" thick Douglas Fir plywood sheathing.

2 Tier 1 Structural Deficiencies

2.1 Surface Fault Rupture

The building site is in close proximity (within 2 miles) to the Calaveras Fault. See Figure 12. In the near field of active faults, there is a potential for large fissures and differential movement to occur in the surface soils. Foundations of buildings located above these ruptures are subjected to large differential movements that induce large forces in the building superstructure. These forces are concurrent with all existing gravity loads and seismic forces during an earthquake.

2.2 Narrow Shear Walls

Narrow shear walls are highly stressed and subject to severe deformations that reduce the capacity of the walls. Most of the damage occurs at the base and consists of sliding of the sill plate and deformation of hold-down anchors where present. As the deformation continues, the plywood pulls up on the sill plate, causing splitting. Splitting of the end studs at the bolted attachment of hold-down anchors is also common. The aspect ratio for wood walls is the story height to wall length.

2.3 Interconnection ties and holdown anchors

The shear walls do not have interconnection ties to transfer overturning forces through the floor. Shear walls in East-West direction do not have holdowns called out on the plans. Shear walls without holdown anchors may be subjected to significant overturning, and damage can

be caused by uplift and racking of the shear walls. Hold down anchorage can help resist overturning forces and can greatly strengthen shear walls vs. walls without anchorage.

3 Tier 2 Analysis

The ASCE 41 Tier 1 procedure consists of a series of checklists that quickly identifies deficiencies. Based on the Tier 1 results, a Tier 2 analysis is performed to more accurately analyze element demands and capacities.

The following items are analyzed in greater detail under the Tier 2 procedure:

- Shear stress check in walls
- Narrow Shear Walls

Missing building elements causing Tier 1 deficiencies (such as redundancy, interconnection ties and holdowns) were not required to be analyzed under the Tier 2 procedure. These elements are required to meet the BPOE and need to be installed as part of any seismic rehabilitation.

3.1 Narrow Shear walls

Tier 2 analysis finds that the shear stress check is compliant without considering narrow shear walls to be a part of the lateral force resisting system.

4 Mitigation

4.1 Interconnection ties and holdown anchors

New straps can be added at shear walls to transfer overturning forces between floor to floor. Shear walls without hold downs should be retrofitted with hold down hardware and compression posts. New hold down hardware could be retrofitted at shear wall ends and anchor bolts would need to be epoxied into the existing foundations. Compression posts could be installed along with the hold down hardware as required. Foundation strengthening may be required if existing foundations are shallow or weak in local areas.

5 Conclusion

While the building has holdowns in the transverse loading direction, holdowns appear to be missing in the longitudinal loading direction. In some cases, the original designer of the building may have assumed there was sufficient dead load to resist overturning forces. Lower seismic forces at the time of design may have allowed for this design. However, wood shear

walls without holdowns or ties between floors have reduced ductility and may be subject to overturning at excessive deflections. Seismic demands have increased, and detailing demands have become more stringent since the original construction. Therefor we conclude the building has an incomplete lateral force resisting system, which does not meet the requirements of ASCE 41-17 for the BPOE performance. Retrofitting these conditions are required to meet the Structural Performance Level of the BPOE.

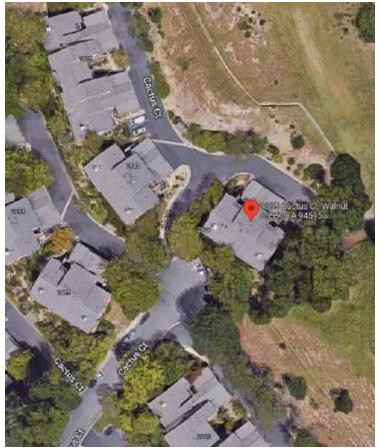
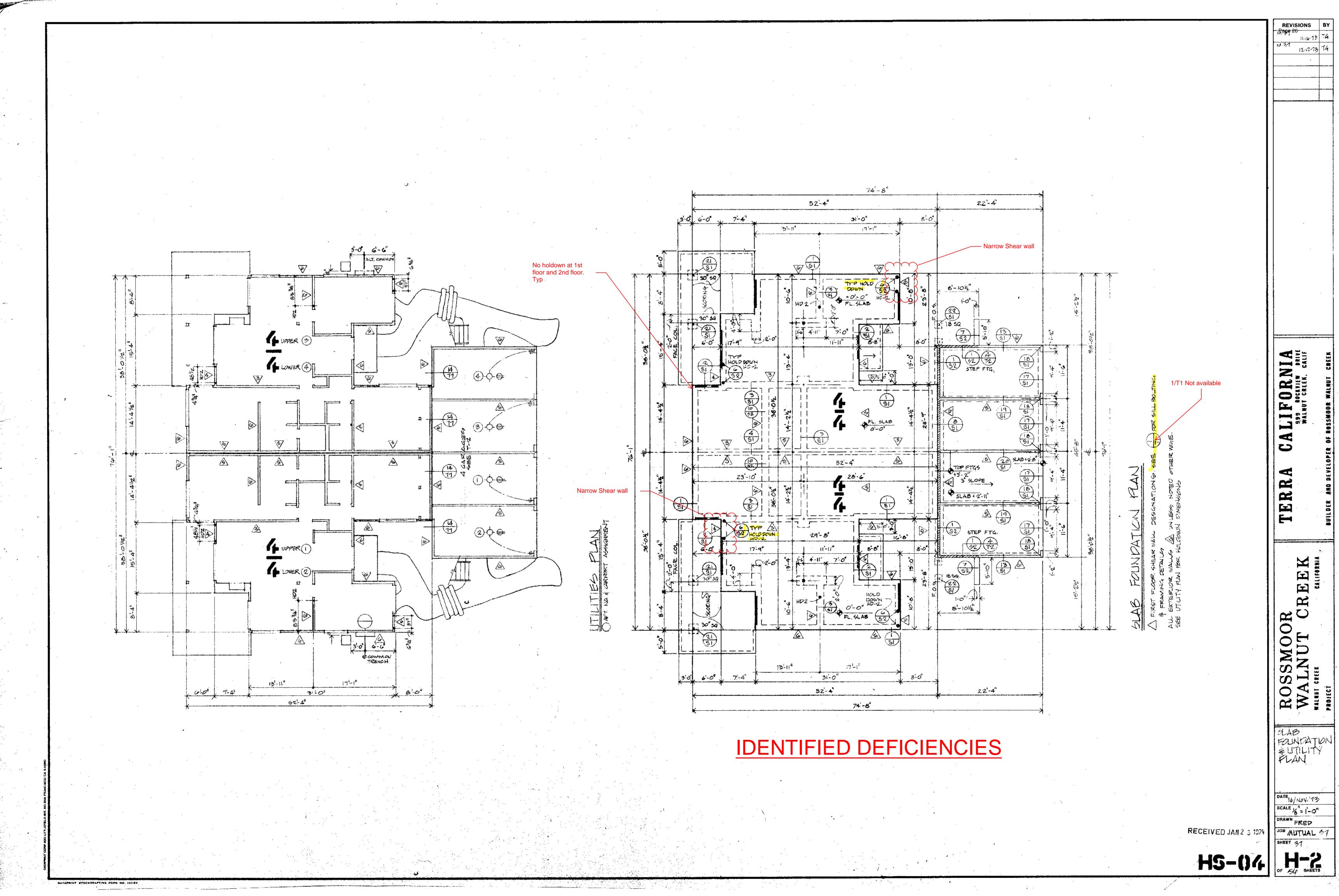
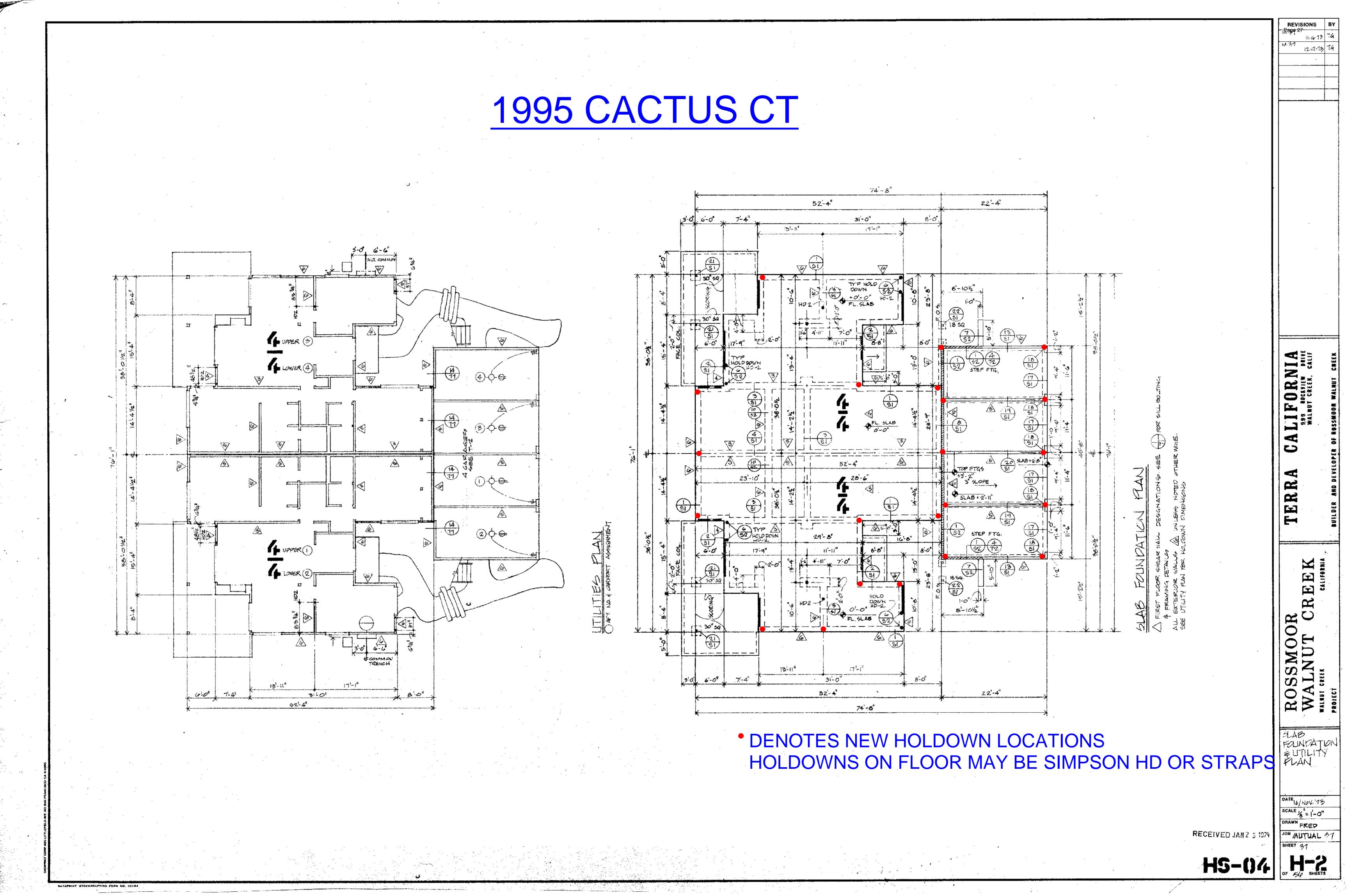




Figure 3. Site Location – 1995 Cactus Ct

DEFICIENCIES AND MITIGATIONS

BUILDING 4 2516 PTARMIGAN DRIVE

Building 4 –2516 Ptarmigan Drive, Walnut Creek, CA

1 General

2516 Ptarmigan Drive is bounded by Ptarmigan Drive to the west and residential property to the east and parking lots on north and south.

The building is a 1-story wood framed building with plywood sheathing supported on wood trusses at the roof. Those are supported on wood stud walls which are supported on shallow concrete foundations. The ground floor is concrete slab on grade. Lateral resistance is provided by a combination of wood shear walls and let-in bracing. Shear wall sheathing is 3/8" standard. These buildings are ASCE 41 Building Type W1A.

The roof is framed prefabricated trusses at 24" OC. The trusses are supported by bearing wall studs. Roof sheathing is 3/8" thick Douglas Fir plywood sheathing.

2 Tier 1 Structural Deficiencies

2.1 Interconnection ties and holdown anchors

The shear walls do not have interconnection ties to transfer overturning forces through the floor. Shear walls in East-West direction do not have holdowns called out on the plans. Shear walls without holdown anchors may be subjected to significant overturning, and damage can be caused by uplift and racking of the shear walls. Hold down anchorage can help resist overturning forces and can greatly strengthen shear walls vs. walls without anchorage.

3 Tier 2 Analysis

The ASCE 41 Tier 1 procedure consists of a series of checklists that quickly identifies deficiencies. Based on the Tier 1 results, a Tier 2 analysis is performed to more accurately analyze element demands and capacities.

The following items are analyzed in greater detail under the Tier 2 procedure:

- Shear stress check in walls
- Narrow Shear Walls

Missing building elements causing Tier 1 deficiencies (such as redundancy, interconnection ties and holdowns) were not required to be analyzed under the Tier 2 procedure. These elements are required to meet the BPOE and need to be installed as part of any seismic rehabilitation.

4 Mitigation

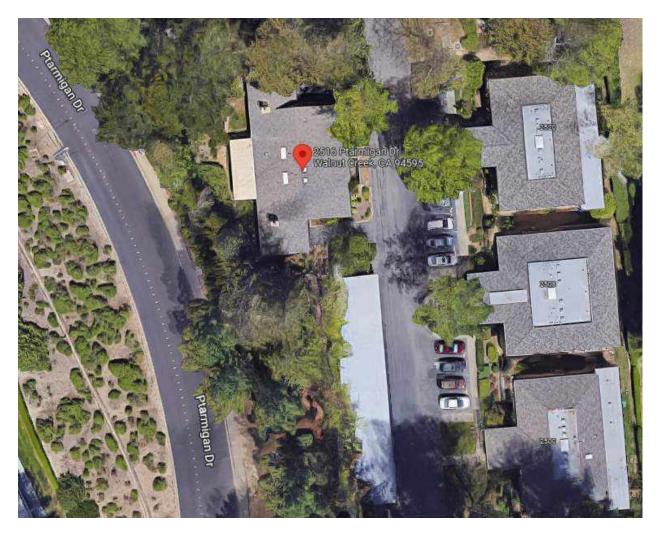
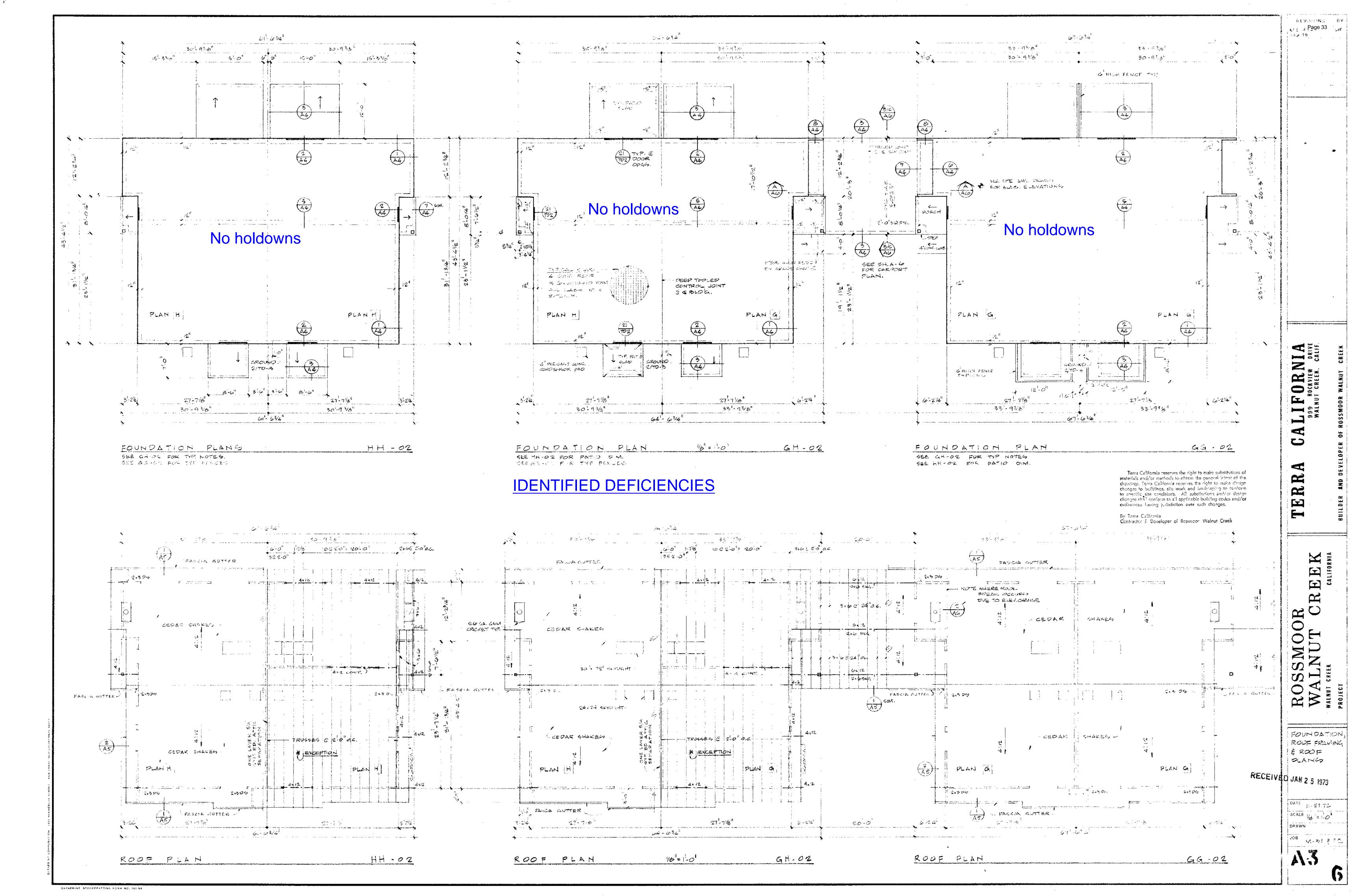
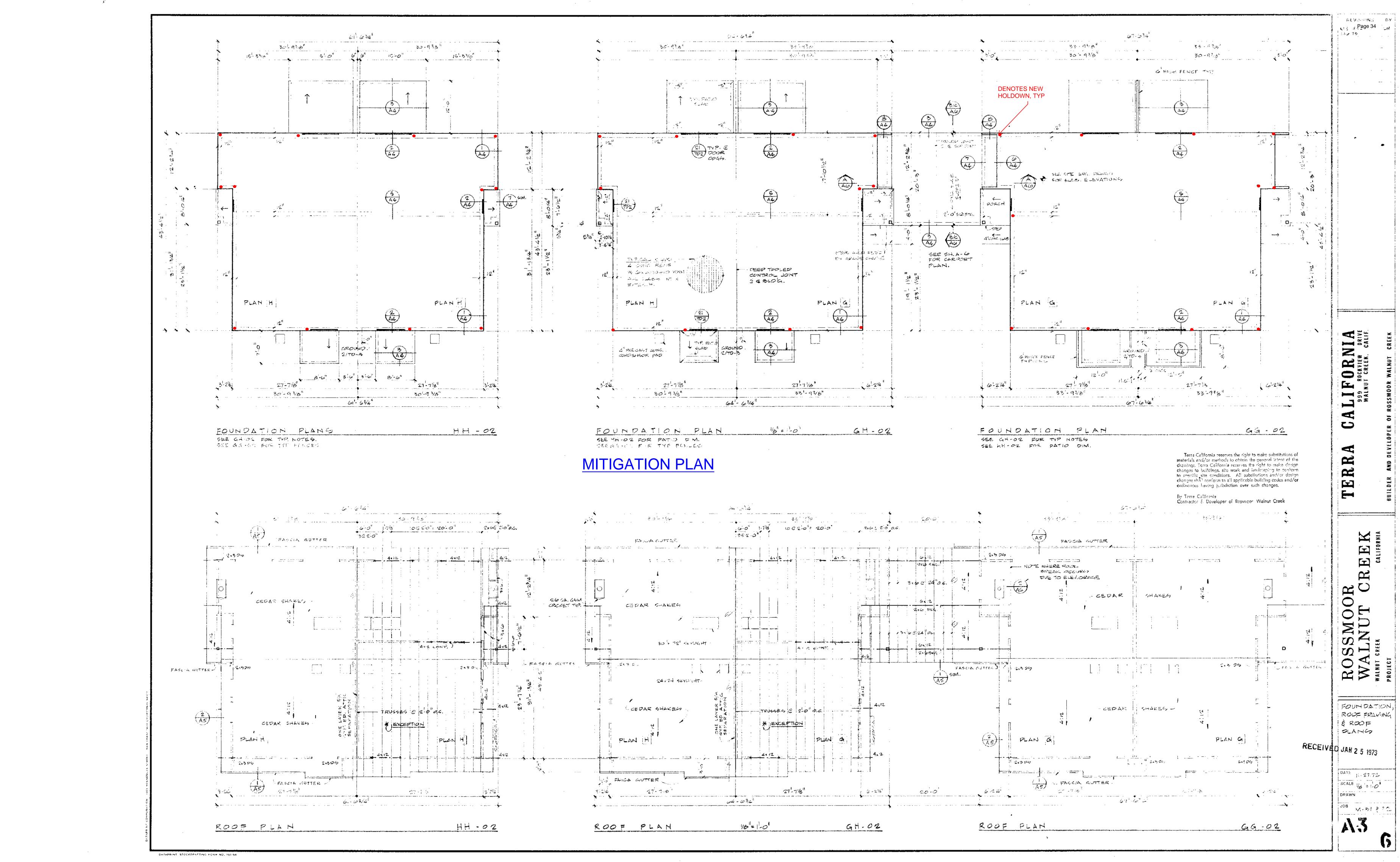
4.1 Interconnection ties and holdown anchors

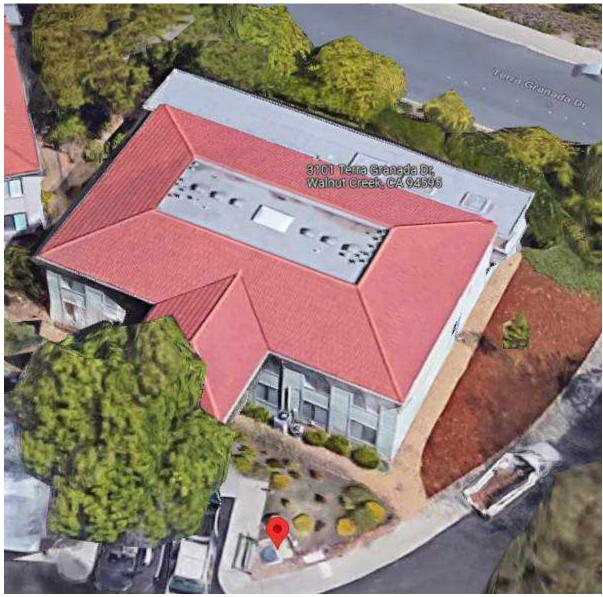
New straps can be added at shear walls to transfer overturning forces between floor to floor. Shear walls without hold downs should be retrofitted with hold down hardware and compression posts. New hold down hardware could be retrofitted at shear wall ends and anchor bolts would need to be epoxied into the existing foundations. Compression posts could be installed along with the hold down hardware as required. Foundation strengthening may be required if existing foundations are shallow or weak in local areas.

5 Conclusion

The building has an incomplete lateral force resisting system, which does not meet the requirements of ASCE 41-17 for the BPOE performance requirement or the current building code. Shear walls are missing the required hold downs to allow them to reach their capacity.

The building is almost 50 years old. Seismic demands have increased and detailing demands have become more stringent since the original construction. Retrofits are required to meet the Structural Performance Level.


Figure 4. Site Location – 2516 Ptarmigan Drive

DEFICIENCIES AND MITIGATIONS

BUILDING 5 3101 TERRA GRANADA DRIVE

Oakland | Portland | ida-se.com

Building 5 –3101 Terra Granada Drive, Walnut Creek, CA

1 General

3101 Terra Granada Dr is bounded by Terra Granada Dr to the north, east & south and residential property to the west.

The building is a 2-story wood framed building with plywood sheathing supported on wood trusses at the roof and joists at the floor. Those are supported on wood stud walls which are supported on shallow concrete foundations. Lateral resistance is provided by wood shear walls. Shear wall sheathing is 3/8" standard. Lateral resistance is also provided by 1-1x6 LET-IN Diagonal Brace in addition to plywood shear walls.

These buildings are ASCE 41 Building Type W1A.

The roof is framed prefabricated trusses at 24" OC. The trusses are supported by bearing wall studs. Roof sheathing is 3/8" thick Douglas Fir plywood sheathing.

2 Tier 1 Structural Deficiencies

2.1 Interconnection ties and holdown anchors

The shear walls do not have interconnection ties to transfer overturning forces through the floor. Shear walls in East-West direction do not have holdowns called out on the plans. Shear walls without holdown anchors may be subjected to significant overturning, and damage can be caused by uplift and racking of the shear walls. Hold down anchorage can help resist overturning forces and can greatly strengthen shear walls vs. walls without anchorage.

2.2 Let-In Diagonal Bracing

The building is lateral braced by a combination of let-in diagonal bracing and shear walls. Let-In bracing is a diagonal wood member which is recessed or "let-in" to the wall studs to provide lateral load resistance. This bracing system lacks the ductility of plywood shear walls and are not desirable as a primarily lateral load resisting system for the building. This lateral load resisting system is not permitted in new construction under current building loads.

3 Tier 2 Analysis

The ASCE 41 Tier 1 procedure consists of a series of checklists that quickly identifies deficiencies. Based on the Tier 1 results, a Tier 2 analysis is performed to more accurately analyze element demands and capacities.

The following items are analyzed in greater detail under the Tier 2 procedure:

- Shear stress check in walls
- Narrow Shear Walls

Missing building elements causing Tier 1 deficiencies (such as redundancy, interconnection ties and holdowns) were not required to be analyzed under the Tier 2 procedure. These elements are required to meet the BPOE and need to be installed as part of any seismic rehabilitation.

4 Mitigation

4.1 Interconnection ties and holdown anchors

New straps can be added at shear walls to transfer overturning forces between floor to floor. Shear walls without hold downs should be retrofitted with hold down hardware and compression posts. New hold down hardware could be retrofitted at shear wall ends and anchor bolts would need to be epoxied into the existing foundations. Compression posts could be installed along with the hold down hardware as required. Foundation strengthening may be required if existing foundations are shallow or weak in local areas.

4.2 Let-In Bracing

Additional shear wall sheathing, ties across floors, and holdowns are recommended to strengthen the buildings in lieu of let-in bracing.

5 Conclusion

The building has an incomplete lateral force resisting system, which does not meet the requirements of ASCE 41-17 for the BPOE performance requirement or the current building code. Shear walls are missing the required hold downs to allow them to reach their capacity.

The building is almost 50 years old. Seismic demands have increased and detailing demands have become more stringent since the original construction. Retrofits are required to meet the Structural Performance Level.

ROSSMOOR TWCM SEISMIC STUDY ASCE 41-17 Tier 1 and Tier 2 Report

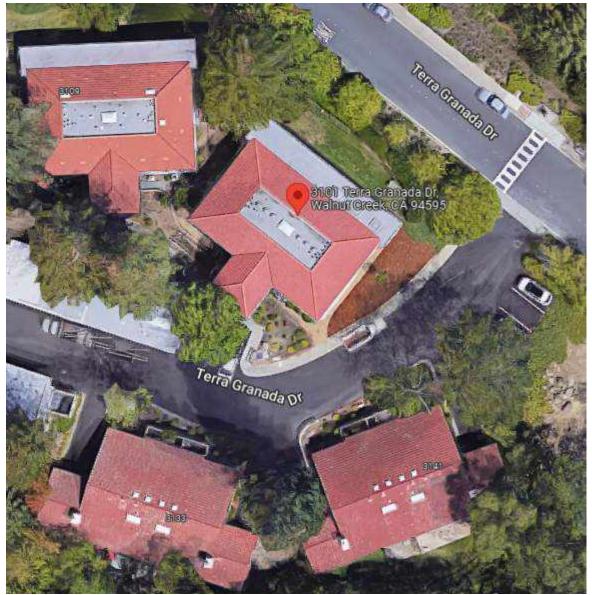
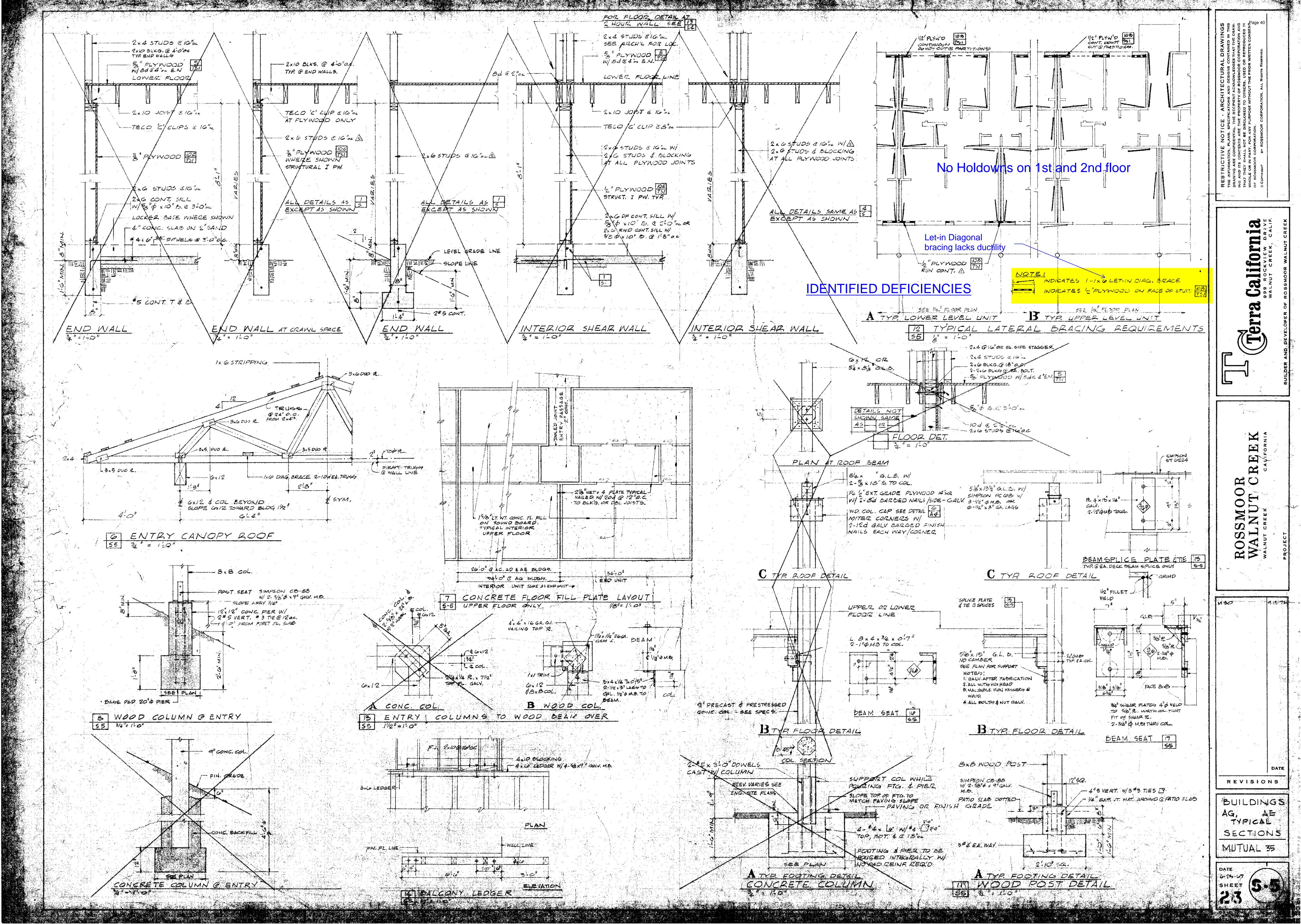
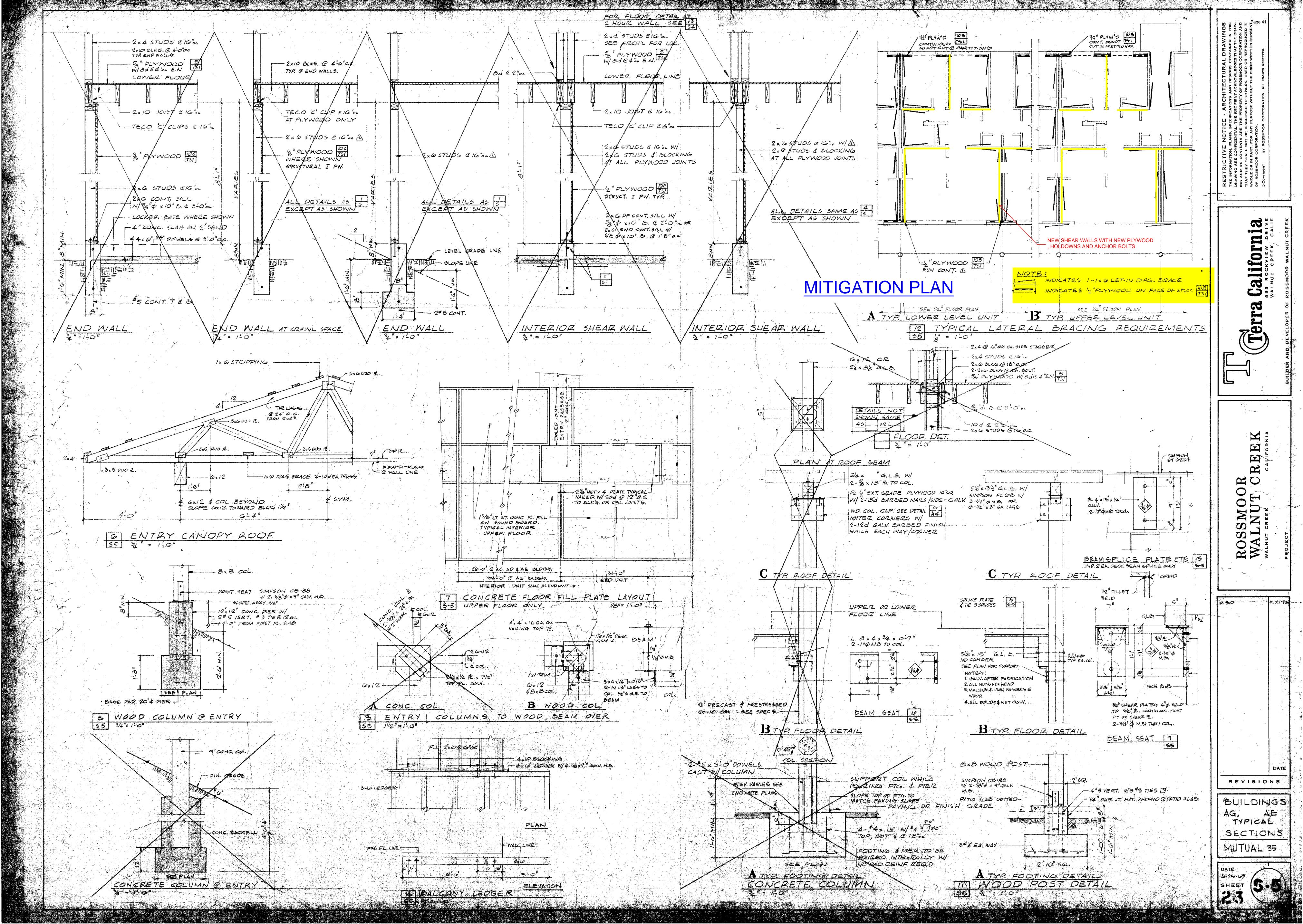




Figure 5. Site Location – 3101 Terra Granada Drive

DEFICIENCIES AND MITIGATIONS

APPENDIX A BUILDING 1 600 TERRA CALIFORNIA DRIVE

Oakland | Portland | ida-se.com

600 Terra California Dr, Walnut Creek, CA 94595, USA

Latitude, Longitude: 37.8628606, -122.0655455

Creeks	ide Clubhouse		
Stanl	oor Event Center 🛱 _{ey Dollar D} r	Barbara Becker Piano Studio	
Star	iley Dollar Clubhouse 😳		Map data ©2022
Date		9/21/2022, 1:42:13 AM	
Design Code Reference	Document	ASCE41-17	
Custom Probability			
Site Class		D - Default (See Section 11.4.3)	
Type Hazard Level	Description		Value BSE-2N
SS	spectral response (0.2 s)		2.084
S ₁	spectral response (1.0 s)		0.772
S _{XS}	site-modified spectral response (0.2 s)		2.501
S _{X1}	site-modified spectral response (1.0 s)		1.313
Fa	site amplification factor (0.2 s)		1.2
F _v	site amplification factor (1.0 s)		1.7
ssuh	max direction uniform hazard (0.2 s)		2.823
crs	coefficient of risk (0.2 s)		0.923
ssrt	risk-targeted hazard (0.2 s)		2.607
ssd	deterministic hazard (0.2 s)		2.084
s1uh	max direction uniform hazard (1.0 s)		1.033
cr1	coefficient of risk (1.0 s)		0.908
s1rt	risk-targeted hazard (1.0 s)		0.938
s1d	deterministic hazard (1.0 s)		0.772
Type Hazard Level	Description		Value BSE-1N
S _{XS}	site-modified spectral response (0.2 s)		1.667
S _{X1}	site-modified spectral response (1.0 s)		0.875

Туре	Description	Value
Hazard Level		Page-44
SS	spectral response (0.2 s)	2.041
S ₁	spectral response (1.0 s)	0.722
S _{XS}	site-modified spectral response (0.2 s)	2.449
S _{X1}	site-modified spectral response (1.0 s)	1.228
f _a	site amplification factor (0.2 s)	1.2
f _v	site amplification factor (1.0 s)	1.7
Туре	Description	Value
Hazard Level		BSE-1E
SS	spectral response (0.2 s)	1.065
S ₁	spectral response (1.0 s)	0.353
S _{XS}	site-modified spectral response (0.2 s)	1.277
S _{X1}	site-modified spectral response (1.0 s)	0.687
F _a	site amplification factor (0.2 s)	1.2
F _v	site amplification factor (1.0 s)	1.947
Туре	Description	Value
Hazard Level		TL Data
T-Sub-L	Long-period transition period in seconds	8

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

600 TERRA CALIFORNIA COLLAPSE PREVENTION BASIC CONFIGURTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS Table 17-1. Very Low Seismicity Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Structural Co	mponents		
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
C NC MA U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7.	5.7.1.1	A.5.1.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Table 17-2. Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low Seismici			
Building Syst	em—General		
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
C NC NA U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. No adjacent buildings	5.4.1.2	A.2.1.2
C NC NA U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. No mezzanines	5.4.1.3	A.2.1.3
Building Syst	em—Building Configuration		
CNC N/A U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above.	5.4.2.1	A.2.2.2
CNC N/A U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. Lateral system is same for both	5.4.2.2	A.2.2.3
CNC N/A U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force- resisting system are continuous to the foundation.	5.4.2.3	A.2.2.4
CNC N/A U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines.	5.4.2.4	A.2.2.5
CNC N/A U	MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered.	5.4.2.5	A.2.2.6
C NC NA U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension.	5.4.2.6	A.2.2.7

600 TERRA CALIFORNIA

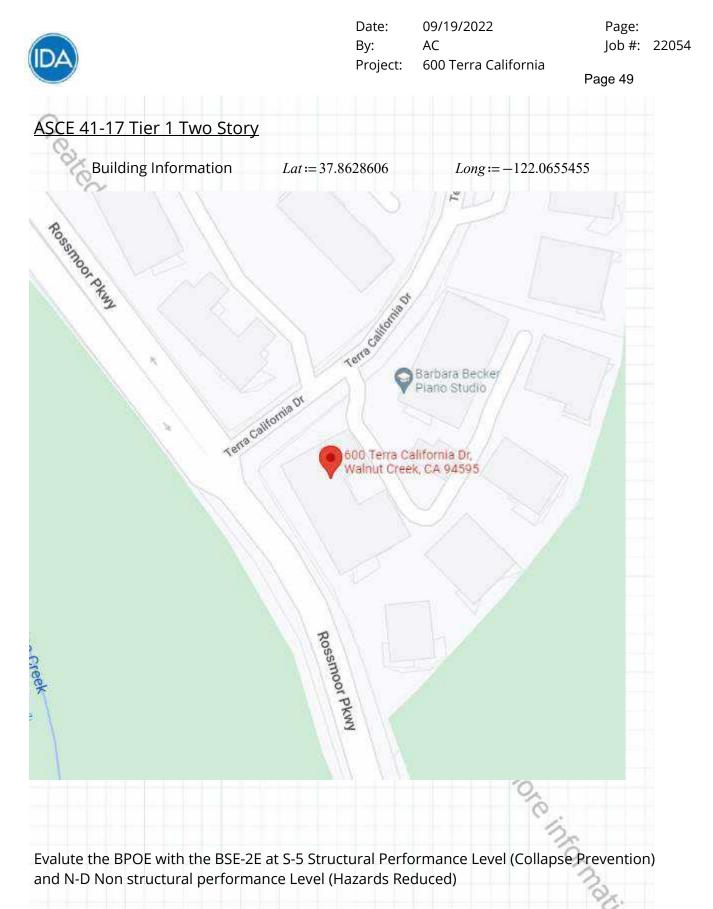
COLLAPSE PREVENTION BASIC CONFIGURTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS Table 17-2 (Continued). Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	smicity (Complete the Following Items in Addition to the Items for Low Seismi	city)	
Geologic Site	Hazards		
CNC N/A U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building.	5.4.3.1	A.6.1.1
CNC N/A U	SLOPE FAILURE: The building site is located away from potential earthquake- induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure.	5.4.3.1	A.6.1.2
CNCN/AU	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. Calavares fault is close to site	5.4.3.1	A.6.1.3
High Seismici	ty (Complete the Following Items in Addition to the Items for Moderate Seism		
Foundation C		• •	
CNC N/A U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force- resisting system at the foundation level to the building height (base/height) is greater than $0.6S_a$. See calc	5.4.3.3	A.6.2.1
	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C.	5.4.3.4	A.6.2.2

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Table 17-4. Collapse Prevention Structural Checklist for Building Types W1 and W1a

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	erate Seismicity		
C NC N/A U	-Resisting System REDUNDANCY: The number of lines of shear walls in each principal direction is	5.5.1.1	A.3.2.1.1
	greater than or equal to 2. Sheet F4 of record drawings	0.0.1.1	7.0.2.1.1
CNC N/A U	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: See calc	5.5.3.1.1	A.3.2.7.1
	Structural panel sheathing 1,000 lb/ft (14.6 kN/m)		
	Diagonal sheathing 700 lb/ft (10.2 kN/m)		
	Straight sheathing 100 lb/ft (1.5 kN/m)		
	All other conditions 100 lb/ft (1.5 kN/m)		
	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system.	5.5.3.6.1	A.3.2.7.2
CNC N/A U	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building.	5.5.3.6.1	A.3.2.7.3
C NCN/A U	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. See F4	5.5.3.6.1	A.3.2.7.4
C NC N/AU	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. No details to verify	5.5.3.6.2	A.3.2.7.5
C NC N/A U	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1.	5.5.3.6.3	A.3.2.7.6


Downloaded from ascelibrary org by Jon Kiland on 08/02/18. Copyright ASCE. For personal use only; all rights reserved.

continues

Table 17-4 (Continued). Collapse Prevention Structural Checklist for Building Types W1 and W1a Page 48

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels.	5.5.3.6.4	A.3.2.7.7
	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces.	5.5.3.6.5	A.3.2.7.8
Connections	Per detail 13/F1		
CNC N/A U	WOOD POSTS: There is a positive connection of wood posts to the foundation.	5.7.3.3	A.5.3.3
C NC N/A U	WOOD SILLS: All wood sills are bolted to the foundation. Per SW Notes on F4	5.7.3.3	A.5.3.4
C NC N/AU	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support. D	5.7.4.1 etails not av	A.5.4.1 ailable
High Seismicit Connections	ty (Complete the Following Items in Addition to the Items for Low and Modera	te Seismicit	y)
CNC N/A U	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft or less with acceptable edge and end distance provided for wood and concrete. Per SW Notes on A4	5.7.3.3	A.5.3.7
Diaphragms			
C NC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints.	5.6.1.1	A.4.1.1
CNC N/A U	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation.	5.6.1.1	A.4.1.3
C NC N/A U	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	5.6.2	A.4.2.1
CNC N/A U	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing.	5.6.2	A.4.2.2
	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12 m) and have aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3
CNC N/A U	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Compliance with BSE-2E implies compliance with BSE-1E 3-C Performance Objective (Life Safety Structural Non structural)

IDA		Date: By: Project:	09/19/2022 AC 600 Terra California	Page: Job #: Page 50	22054
RiskCategory := "II"					
BuildingType := "W1	A"				
S.					
$S_{XS} := 2.449$ $S_{XI} := 1.228$	$F_a := 1.2$	$F_v := 1.7$			
	$S_s := 2.041$	$S_I := 0.722$			
$S_{DS} := \frac{2}{3} \cdot F_a \cdot S_s = 1.0$	63	$S_{DI} \coloneqq \frac{2}{3} \cdot F_{v} \cdot S_{I}$	= 0.82		
12					
$LevelOfSeismicity \coloneqq$	"High"	Table 2-4			
	°C'				
For Tier 1, W1A CP C	hecklists fror	n Table 17-4,			
	10				
	1. T.A.		ar walls, calculated us		
			s than the following v	alues:	
Structural panel she Diagonal sheathing	atning	1000 lb/ft 700 lb/ft			
Straight sheathing		100 lb/ft			
All other conditions		100 lb/ft			
		2			
ASCE 41-17, 4.4.3.3 S		1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	•		
shear walls, <i>v</i> , shall	be calculated	in accordance w	ith Eq. (4-8)		
Note that	the subscript	i has heen remove	ed since this is a one		
		ates level. The su			
-			d to do in Mathcad		
	in children on				
$v := \frac{1}{M_s} \cdot \left(\frac{V}{A_w}\right)$			3		
M_{s} (A_{w})			10		
			2		
			3		
M = 4.5	System	modification fact	or: chall he taken from	a Tabla 4 9	
$M_s := 4.5$	System		or; shall be taken from	T Table 4-0	
A_w	Summa	tion of the horizo	ntal cross-sectional ar	rea of all	
w			on of loading. Openin	0	
			where computing A_w .		
			ea shall be used. For		
		-	shall be used rather th	100	

Page: Job #: 22054

Page 51

Т. =	able 4	1-8. /	W _s Fa	ctors	for S	hear V	Valls			_							
							Level	of Per	formar	ice							
N	/all T	ype				CF	a	LS ^a	l	D ^a							
R	conc	rete, onry,	wood	d, rein	recast forced ormed	4.5	i	3.0	1	.5							
_	nreinf	orce			[1.7		1.25		.0							
	CP =		apse	Prever	ntion, L	.S = L	ife Saf	fety, IO	= Imm	ediate							
						2											
Т	able 4-	7. Mo	dificat	ion Fa													
1						Numb	er of St	ories	_								
в	uilding	Туре	*		1	2	3	≥4	-								
	shear CFS1	wall (' frame	W1, W	ed steel '1a, W2 S3, C1,	5	1.1	1.0		>								
в	PC1a, iraced i	PC2, rame ned s	RM2, (S2) teel str	C2, C3, URMa) rap-brak		1.2	1.1	1.0		Mr.	Tathe						
	lexible	diaph	ragms	y (URN (S1a, 3a, PC1	2011 - 1012/12	1.0	1.0	1,0			and	2					
-	Define	d in T	able 3	-1.								°Q'					
												16	2				
													3				
													6	2			
														3			
														2	2		
															0	Korman	
															1	2	
																4	

		r age 52
2		
Determine <i>V</i> , the pseudo lateral force from Equation 4-1	. <i>V</i> is a function	on of
• <i>C</i> , modification factor to relate expected maximum		
displacements calculated for linear elastic response; 4-7	shall be taker	n from table
• S_a , the response spectral acceleration at the fundam	nentla period o	of the
building in the diretion under consideration. S_a shall	l be calculated	in
accordance with Section 4.4.2.3		
• <i>W</i> , the total dead load		
- Sector - S		
Building type	W1A	
\sim	a 11	
0,	<i>C</i> ≈ 1.1	Factor for TWO stor
Determine S _a		building.
1 second period spectral acceleration of the	$S_{XI} = 1.223$	8
BSE-2E	S _{X1} 1.22	0
4		
2		
Short period spectral acceleration of the BSE-1N		
Design	$S_{XS} = 2.449$	9
Dr.		
Factor per table 4-8	$M_s = 4.5$	
	<u>.</u>	
Determine T	6	
	3	
Coefficient to determine building period	$C_t := 0.020$	
Unight in fact of over the base to the weef level	0,	
Height in feet above the base to the roof level	$h_n := 19 ft$	= 19 J t
	0	5 C
	$\beta := 0.75$	for all other
	p = 0.75	
Fundamental period of vibration of the building,	$T := C_t \cdot \left(-\frac{1}{2}\right)$	$\left(\frac{h_n}{h_n}\right)^p = 0.182$
calculated in accordance with Section 4.4.2.4	$\beta := 0.75$ $T := C_t \cdot \left(\frac{1}{1}\right)$	$\left(\frac{h_n}{ft}\right)^{\beta} = 0.182$
		Px.
$S_a := min\left(\frac{S_{XI}}{T}, S_{XS}\right) = 2.449$ Equation 4-3		10
	3 from 4.4.2.3	

Page 53

Overturning Minimum base dimension of C2A base := 84 ft = 84 ftbase = 4.42 $0.6 \cdot S_a = 1.47$ h_n *Overturning* := if $\left(\frac{base}{h_n} > 0.6 \cdot S_a, \text{``Compliant''}, \text{``Non compliant''}\right)$ Overturning = "Compliant" Per commentary if building is well connected can use building dimensions, not individual shear wall lengths A.6.2.1 Overturning. The ratio of the horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6S_a. The concentration of seismic overturning forces in foundation elements may exceed the capacity of the soil, the foundation structure, or both. The effective horizontal dimension should be determined based on the ability of the seismic-force-resisting elements to act as a system. Therefore, the building dimension thread comfor more information. can be used if the elements are well connected. However, multiple checks may be required for elements isolated on opposite sides of the building.

	Date: By: Project:	09/19/2022 AC 600 Terra California	Page: Job #: 22054 Page 54
Two story portion Weigh up and Geo	ometry		
Floor heights from base		$h \coloneqq \begin{bmatrix} 9 \ ft \\ 18 \ ft \end{bmatrix} = \begin{bmatrix} 9 \\ 18 \end{bmatrix}$] ft
Area of walls in north south direction in		$A_{wNS} \coloneqq \begin{bmatrix} 600 \ ft \\ 600 \ ft \end{bmatrix}$ $A_{wEW} \coloneqq \begin{bmatrix} 440 \ ft \\ 440 \ ft \end{bmatrix}$	
Ž		$A_{wEW} \coloneqq \begin{bmatrix} 440 & ft \\ 440 & ft \end{bmatrix}$	
CMathica		<i>RoofArea</i> := 12500 <i>FloorArea</i> := 1250	
in the second seco	WallPerimet	$er := (150 \ ft \cdot 2) + (84 \ ft \cdot$	(4) = 636 ft
Weight of roof and walls		WallWeight := 20 p	osf
trib to roof		RoofWeight ≔ 20 µ	osf
S. S.		FloorWeight := 30	psf
w:= [FloorArea • FloorWeight + RoofArea • RoofWeight + V	-WallWeight• VallWeight•N	$WallPerimeter \cdot 9 ft$ $VallPerimeter \cdot 4.5 ft$ $= \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $w_i = 796.72 kip$	489.48 307.24 kip
Total seismic weight of	$W := \sum^{\text{length}}$	$\sum_{w=796.72}^{(w)} w = 796.72 \ kip$	
structure	i=		
		1.00 M	
		6	
		nor	
		C.	
			Ora
			Pr.
			07

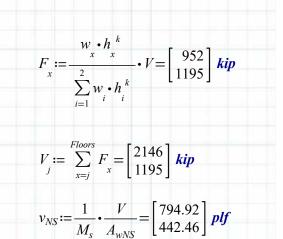
H:\2022 JOBS\22054 Rossmoor TWCM Seismic Study 5 buildings\03 Engineering\600 Terra California\ASCE 41 Tier 1 Quick Check - Two story.mcdx

	Date: By: Project:	09/19/2022 AC 600 Torra California	Page: Job #:	22054
	Project:	600 Terra California	Page 55	
Psuedo seismic force				
Psuedo seismic force per 4.4.2.1 Eq. 4-1		$V \coloneqq C \cdot S_a \cdot W = 2146 \ kip$		

factor per 4.4.2.2

Created

x := 1..2j := 1..2 Floors := 2


Vertical distribution of psuedo seismic force per 4.5.2.2 Eq 4-3a

Story shear at story level j

Shear stress in shear walls in north south direction

Shear stress in shear walls in east west direction

 $k := if(T > 2.5, 2, if(T \le 0.5, 1, 0.5 \cdot T + 0.75)) = 1$

$$v_{EW} := \frac{1}{M_s} \cdot \frac{V}{A_{wEW}} = \begin{bmatrix} 1083.98\\ 603.36 \end{bmatrix} plf$$

Shear Stress is slightly more than 1000 plf in E-W (<10%)

42

APPENDIX B BUILDING 2 1605 PTARMIGAN DRIVE

Oakland | Portland | ida-se.com

1605 Ptarmigan Dr, Walnut Creek, CA 94595, USA

Latitude, Longitude: 37.8555633, -122.0672989

ASCE41-17

Design Code Reference Document Custom Probability Site Class

Site Class	D - Default (See Sect	tion 11.4.3)
Type Hazard Level	Description	Value BSE-2N
S _S	spectral response (0.2 s)	2.147
S ₁	spectral response (1.0 s)	0.796
S _{XS}	site-modified spectral response (0.2 s)	2.577
S _{X1}	site-modified spectral response (1.0 s)	1.354
F _a	site amplification factor (0.2 s)	1.2
F _v	site amplification factor (1.0 s)	1.7
ssuh	max direction uniform hazard (0.2 s)	2.825
crs	coefficient of risk (0.2 s)	0.924
ssrt	risk-targeted hazard (0.2 s)	2.61
ssd	deterministic hazard (0.2 s)	2.147
s1uh	max direction uniform hazard (1.0 s)	1.037
cr1	coefficient of risk (1.0 s)	0.908
s1rt	risk-targeted hazard (1.0 s)	0.942
s1d	deterministic hazard (1.0 s)	0.796
Туре	Description	Value

Туре	Description	Value
Hazard Level		BSE-1N
S _{XS}	site-modified spectral response (0.2 s)	1.718
S _{X1}	site-modified spectral response (1.0 s)	0.903

Туре	Description	Value
Hazard Level		Page 38
S _S	spectral response (0.2 s)	2.044
S ₁	spectral response (1.0 s)	0.726
S _{XS}	site-modified spectral response (0.2 s)	2.453
S _{X1}	site-modified spectral response (1.0 s)	1.234
f _a	site amplification factor (0.2 s)	1.2
f _v	site amplification factor (1.0 s)	1.7
Туре	Description	Value
Hazard Level		BSE-1E
SS	spectral response (0.2 s)	1.068
S ₁	spectral response (1.0 s)	0.355
S _{XS}	site-modified spectral response (0.2 s)	1.282
S _{X1}	site-modified spectral response (1.0 s)	0.69
F _a	site amplification factor (0.2 s)	1.2
F _v	site amplification factor (1.0 s)	1.945
Туре	Description	Value
Hazard Level		TL Data
T-Sub-L	Long-period transition period in seconds	8

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

1605 PTARMIGAN COLLAPSE PREVENTION BASIC CONFIGURTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS Table 17-1. Very Low Seismicity Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Structural Co	mponents		
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
C NC MA U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7.	5.7.1.1	A.5.1.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Table 17-2. Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low Seismici			
Building Syst			
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
C NC NA U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. No adjacent buildings	5.4.1.2	A.2.1.2
C NC NA U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. No mezzanines	5.4.1.3	A.2.1.3
Building Syst	em—Building Configuration		
C)NC N/A U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above.	5.4.2.1	A.2.2.2
CNC N/A U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. Lateral system is same for both	5.4.2.2	A.2.2.3
CNC N/A U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force- resisting system are continuous to the foundation.	5.4.2.3	A.2.2.4
CNC N/A U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines.	5.4.2.4	A.2.2.5
CNC N/A U	MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered.	5.4.2.5	A.2.2.6
C NC NA U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension.	5.4.2.6	A.2.2.7

1605 PTARMIGAN

COLLAPSE PREVENTION BASIC CONFIGURTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS Table 17-2 (Continued). Collapse Prevention Basic Configuration Checklist

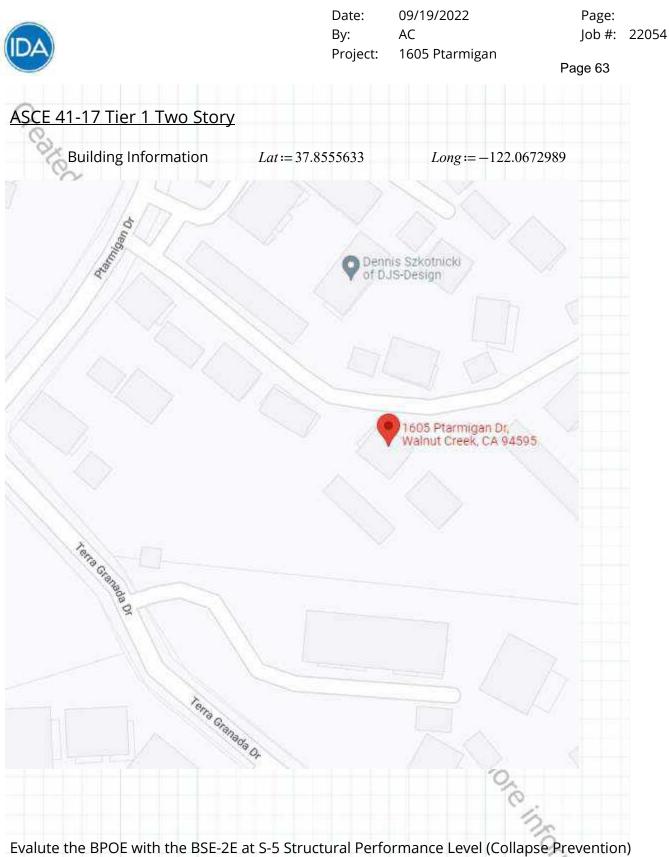
Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	micity (Complete the Following Items in Addition to the Items for Low Seismi	city)	
Geologic Site	Hazards		
CNC N/A U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building.	5.4.3.1	A.6.1.1
CNC N/A U	SLOPE FAILURE: The building site is located away from potential earthquake- induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure.	5.4.3.1	A.6.1.2
CNCN/AU	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. Calavares fault is close to site	5.4.3.1	A.6.1.3
High Seismici	ty (Complete the Following Items in Addition to the Items for Moderate Seism		
Foundation C		• *	
CNC N/A U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force- resisting system at the foundation level to the building height (base/height) is greater than $0.6S_a$. See calc	5.4.3.3	A.6.2.1
CNC N/A U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C.	5.4.3.4	A.6.2.2

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Downloaded from ascelibrary org by Jon Kiland on 08/02/18. Copyright ASCE. For personal use only; all rights reserved.

Table 17-4. Collapse Prevention Structural Checklist for Building Types W1 and W1a

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	erate Seismicity		
C NC N/A U	P-Resisting System	5.5.1.1	A.3.2.1.1
	REDUNDANCY: The number of lines of shear walls in each principal direction is	5.5.1.1	A.3.2.1.1
C NC N/A U	greater than or equal to 2. Sheet F4 of record drawings SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using	5.5.3.1.1	A.3.2.7.1
	the Quick Check procedure of Section 4.4.3.3, is less than the following	5.5.5.1.1	A.3.2.7.1
	values: See calc		
	Structural panel sheathing 1,000 lb/ft (14.6 kN/m)		
	Diagonal sheathing 700 lb/ft (10.2 kN/m)		
	Straight sheathing 100 lb/ft (1.5 kN/m)		
_	All other conditions 100 lb/ft (1.5 kN/m)		
CNC N/A U	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not	5.5.3.6.1	A.3.2.7.2
\smile	rely on exterior stucco walls as the primary seismic-force-resisting system.		
CNC N/A U	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or	5.5.3.6.1	A.3.2.7.3
\smile	gypsum wallboard is not used for shear walls on buildings more than one story		
~	high with the exception of the uppermost level of a multi-story building.		
C <mark>NC</mark> N/A U	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect	5.5.3.6.1	A.3.2.7.4
-	ratio greater than 2-to-1 are not used to resist seismic forces. See F4		
C NC N/AU	WALLS CONNECTED THROUGH FLOORS: Shear walls have an	5.5.3.6.2	A.3.2.7.5
\bigcirc	interconnection between stories to transfer overturning and shear forces		
	through the floor. No details to verify		
C NC N/A U	HILLSIDE SITE: For structures that are taller on at least one side by more than	5.5.3.6.3	A.3.2.7.6
\bigcirc	one-half story because of a sloping site, all shear walls on the downhill slope		
	have an aspect ratio less than 1-to-1.		


continues

1605 PTARMIGAN

COLLAPSE PREVENTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS Table 17-4 (Continued). Collapse Prevention Structural Checklist for Building Types W1 and W1a Page 62

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels.	5.5.3.6.4	A.3.2.7.7
C NC MA U	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces.	5.5.3.6.5	A.3.2.7.8
Connections	Per detail 13/F1		
CNC N/A U	WOOD POSTS: There is a positive connection of wood posts to the foundation.	5.7.3.3	A.5.3.3
C NC N/A U	WOOD SILLS: All wood sills are bolted to the foundation. Per SW Notes on F4	5.7.3.3	A.5.3.4
C NC N/AU	GIRDER–COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support. D	5.7.4.1 etails not av	A.5.4.1 ailable
	y (Complete the Following Items in Addition to the Items for Low and Modera	te Seismicit	y)
Connections CNC N/A U	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft or less with acceptable edge and end distance provided for wood and concrete. Per SW Notes on A4	5.7.3.3	A.5.3.7
Diaphragms			
CNC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints.	5.6.1.1	A.4.1.1
CNC N/A U	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation.	5.6.1.1	A.4.1.3
C NC NA U	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	5.6.2	A.4.2.1
CNC N/A U	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing.	5.6.2	A.4.2.2
	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12 m) and have aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3
CNC N/A U	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

and N-D Non structural performance Level (Hazards Reduced)

Compliance with BSE-2E implies compliance with BSE-1E 3-C Performance Objective (Life Safety Structural Non structural)

IDA			Date: By: Project:	09/19/2022 AC 1605 Ptarmigan	Page: Job #: Page 64	22054
RiskCateg	ory:="II"					
BuildingT	vpe := "W1A"					
E.						
$S_{XS} := 2.45$	$F_a := 1$	$.2 F_v$	·			
$S_{XS} = 2.43$ $S_{XI} \coloneqq 1.23$.2 T _v	•= 1.7			
~ 1 5	$S_s := 2$.044 S ₁	= 0.726			
~	2					
$S_{DS} := \frac{2}{2} \cdot 1$	$F_a \cdot S_s = 1.64$	$S_{DI} :=$	$\frac{2}{3} \cdot F_v \cdot S_l$	= 0.82		
3	15		3			
	De					
LevelOfSe	<i>ismicity</i> := "High"	Table	e 2-4			
	2					
Ear Tiar 1 V	V1A CP Checklist	s from Tablo '	17 /			
	VIA CE CHECKIIS		1 / -4,			
SHEAR STRI	SS CHECK The	shear stress ii	n the she	ar walls, calculated	using	
		N. Yes		s than the following	-	
	anel sheathing	1000 lb				
Diagonal sh		700 lb/				
Straight she	-	100 lb/				
All other co	-	100 lb/	ft			
		i cl	5			
			and the second se	e average stress in		
Silear waiis	v, shall be calcu	liated in accor	uance wi	ui Eq. (4-8)		
	Note that the sub	scrint i has hee	en remove	d since this is a one		
				perscript avg has		
				d to do in Mathcad		
1 / 12	\			.0		
$v := \frac{1}{M_s} \cdot \left(\frac{V}{A_w}\right)$				3		
	/			10		
				2		
				3		
$M_s := 4.5$	Sv	stem modifica	tion facto	or; shall be taken fro	om Table 4-8	
$m_s = m_s$	59					
A_w	Su	mmation of th	ne horizo	ntal cross-sectional	area of all	
				on of loading. Open	0	
	tal	ken into consi	deration	where computing A	w. For	
	ma	asonry walls, t	he net ar	ea shall be used. Fo	or wood-	
	fra	amed walls, th	e length s	shall be used rather	than the	
	ar	ea				

Page: Job #: 22054

Page 65

Table 4-8. M _s Factors fo	or Sh	lear Wa	alls						
		Le	evel c	of Perfo	rmance				
Wall Type		CP ^a	L	.S ^a	IO ^a				
Reinforced concrete, pre- concrete, wood, reinfor masonry, and cold-form steel Unreinforced masonry ^a CP = Collapse Preventio	ned	4.5 1.75	1	.0	1.5				
Table 4-7. Modification Factor		~							
Building Type*	1	Number 2	of Sto	ries ≥4					
Wood and cold-formed steel shear wall (W1, W1a, W2, CFS1) Moment frame (S1, S3, C1, PC2a)	1.3	1,1	1.0	1.0	0				
Shear wall (S4, S5, C2, C3, PC1a, PC2, RM2, URMa) Braced frame (S2) Cold-formed steel strap-brace wall (CFS2)	1.4	1.2	1.1	1.0	MAN .!	nathcad			
Unreinforced masonry (URM) Flexible diaphragms (S1a, S2a, S5a, C2a, C3a, PC1, RM1)	1.0	1.0	1.0	1.0		atro			
* Defined in Table 3-1.	-	-	0.1			00	-		
						(On l		
							18		
							1	3	
								0	
								0	informatio
									0

	Project:	1605 Pta	armigan	Page 66
Determine <i>V</i> , the pseudo lateral force fro	om Equatior	י 4-1. <i>V</i> i	s a functio	on of
 <i>C</i>, modification factor to relate expendisplacements calculated for linear e 4-7 				
• <i>S_a</i> , the response spectral acceleration building in the diretion under considuaccordance with Section 4.4.2.3			-	
• <i>W</i> , the total dead load				
G				
Building type			W1A	
tor			<i>C</i> ≔ 1.1	Factor for TWO story building.
Determine <i>S_a</i>				
1 second period spectral acceleration BSE-2E	on of the		$S_{XI} = 1.234$	4
	52			
Short period spectral acceleration of	of the BSE-1	N		
Design	.3		$S_{XS} = 2.453$	3
Factor per table 4-8	90	NC.	$M_{s} = 4.5$	
Determine T		×0.0		
Coefficient to determine building pe	eriod	3	$C_t := 0.020$	
Height in feet above the base to the	e roof level		$h_n := 19 ft$	
			$\beta := 0.75$	for all other
Fundamental period of vibration of calculated in accordance with Section		5,	$\beta := 0.75$ $T := C_t \cdot \left(\frac{1}{1}\right)$	$\left(\frac{h_n}{ft}\right)^{\beta} = 0.182$
$S_a := min\left(\frac{S_{XI}}{T}, S_{XS}\right) = 2.453$	Equatio	n 4-3 fro	m 4.4.2.3	tion

Page: Job #: 22054

2		Project:	1605 Ptarmigan	Page 6
Overturniı	ng			
Minimur	m base dimension of C2A	base := $30 ft = 3$	30 <i>ft</i>	
94	$\frac{base}{l} = 1.58$	0.6•5	$S_a = 1.47$	
10	h_n			`
	$\frac{base}{h_n} = 1.58$ $Overturning := \mathbf{if}\left(\frac{base}{h_n} > 0\right)$	$0.6 \cdot S_a$, "Comp	liant", "Non compliar	nt'')
	<i>Overturning</i> = "Compliant			
	Per commentary if buil building dimensions, n	-		
	Dr			
1671	Quarturning The votio of the horizo	intal dimancian a		
	Overturning. The ratio of the horizo mic-force-resisting system at the found			
	g height (base/height) is greater than concentration of seismic overturning fo		2 2	
element	ts may exceed the capacity of the so	il, the foundation	n	
	e, or both. The effective horizontal dir			
	ned based on the ability of the seist is to act as a system. Therefore, the b			
can be	used if the elements are well con	nected. However	f,	
	e checks may be required for elements es of the building.	isolated on oppo	÷	
Site pith	es of the outleting.	0	<	
		-	C.	
			80	
			Y.O.	
			0	
			2	
			6	
			1	
			3	
			0,	v
			0	0
				13.
				6
				4
				2
				9%.
				0
			ncad.com for more	1

	Date: By: Project:	09/19/2022 AC 1605 Ptarmigan	Page: Job #: Page 68	22054
Two story portion Weigh up and Geo	ometry			
Floor heights from base		$h \coloneqq \begin{bmatrix} 9 \ ft \\ 18 \ ft \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 9\\18 \end{bmatrix}$ ft	
Area of walls in north south direction in		$A_{wNS} \coloneqq \begin{bmatrix} 112 & ft \\ 112 & ft \end{bmatrix}$ $A_{wEW} \coloneqq \begin{bmatrix} 48 & ft \\ 48 & ft \end{bmatrix}$		
No.		$A_{wEW} \coloneqq \begin{bmatrix} 48 & ft \\ 48 & ft \end{bmatrix}$		
CMathcad		RoofArea := 144 FloorArea := 14		
neg.	$WallPerimeter \coloneqq (30 \ ft \cdot 2) + (48 \ ft \cdot 2) = 156 \ ft$			
Weight of roof and walls		WallWeight := 20 psf		
trib to roof		RoofWeight := 20 psf		
S. S.		FloorWeight := 30 psf		
$w := \begin{bmatrix} FloorArea \cdot FloorWeight + \\ RoofArea \cdot RoofWeight + V \end{bmatrix}$	- WallWeight • VallWeight • W	WallPerimeter • 9 ft VallPerimeter • 4.5 ft]=	$\begin{bmatrix} 71.28\\42.84 \end{bmatrix} kip$	
Total seismic weight of structure	$W := \sum_{i=1}^{\text{length}}$	$\sum_{i=1}^{n(w)} w_i = 114.12 \ kip$		
		ad.com		
		$\sum_{i=1}^{2} w_i = 114.12 \ kip$	inform	
			ation.	

H:\2022 JOBS\22054 Rossmoor TWCM Seismic Study 5 buildings\03 Engineering\1605 Ptarmigan\Building 2.mcdx

	Date: By: Project:	09/19/2022 AC 1605 Ptarmigan	Page: Job #: 22054 Page 69
Psuedo seismic force			
Psuedo seismic force 4.4.2.1 Eq. 4-1 factor per 4.4.2.2	per	$V \coloneqq C \cdot S_a \cdot W = 308$	s kip
factor per 4.4.2.2		k := if(T > 2.5, 2, if	$F(T \le 0.5, 1, 0.5 \cdot T + 0.75)) = 1$
$j := 1 \dots 2$ Floors:		$w \cdot h^k$	- [140] <i>Li</i>
Vertical distribution of psuedo seismic force 4.5.2.2 Eq 4-3a		$F_{x} \coloneqq \frac{w_{x} \cdot h_{x}^{k}}{\sum_{i=1}^{2} w_{i} \cdot h_{i}^{k}} \cdot V$	$= \lfloor 168 \rfloor^{\kappa p}$
Story shear at story l	vel j	$V_{j} := \sum_{x=j}^{Floors} F_{x} = \begin{bmatrix} 308\\168 \end{bmatrix}$	³ ₃] <i>kip</i>
Shear stress in shear in north south direct	())	$v_{NS} := \frac{1}{M_s} \cdot \frac{V}{A_{wNS}} =$	
Shear stress in shear in east west direction	walls	$v_{EW} \coloneqq \frac{1}{M_s} \cdot \frac{V}{A_{wEW}} \equiv$	$= \begin{bmatrix} 1425.6 \\ 778.2 \end{bmatrix} plf$
hear Stress is slightly more tha	1000 plf in E-W w	ith only one shear v	wall.
	0	3	
		34.0	
		MO	
		30).
			C inc
			orma
			Mall.

(


APPENDIX C BUILDING 3 1995 CACTUS COURT

1995 Cactus Ct, Walnut Creek, CA 94595, USA

Latitude, Longitude: 37.8723046, -122.0706504

			map data szozz
Date		10/31/2022, 12:08:56 AM	
Design Code Reference	Document	ASCE41-17	
Custom Probability			
Site Class		D - Default (See Section 11.4.3)	
Туре	Description		Value
Hazard Level			BSE-2N
SS	spectral response (0.2 s)		1.952
S ₁	spectral response (1.0 s)		0.721
S _{XS}	site-modified spectral response (0.2 s)		2.342
S _{X1}	site-modified spectral response (1.0 s)		1.225
F _a	site amplification factor (0.2 s)		1.2
F _v	site amplification factor (1.0 s)		1.7
ssuh	max direction uniform hazard (0.2 s)		2.793
crs	coefficient of risk (0.2 s)		0.924
ssrt	risk-targeted hazard (0.2 s)		2.581
ssd	deterministic hazard (0.2 s)		1.952
s1uh	max direction uniform hazard (1.0 s)		1.019
cr1	coefficient of risk (1.0 s)		0.908
s1rt	risk-targeted hazard (1.0 s)		0.925
s1d	deterministic hazard (1.0 s)		0.721
Туре	Description		Value
Hazard Level			BSE-1N

Туре	Description	Value
Hazard Level		BSE-1N
S _{XS}	site-modified spectral response (0.2 s)	1.561
S _{X1}	site-modified spectral response (1.0 s)	0.817

Туре	Description	Value
Hazard Level		Page 72
S _S	spectral response (0.2 s)	2.02
S ₁	spectral response (1.0 s)	0.713
S _{XS}	site-modified spectral response (0.2 s)	2.342
S _{X1}	site-modified spectral response (1.0 s)	1.212
f _a	site amplification factor (0.2 s)	1.2
f _v	site amplification factor (1.0 s)	1.7
Туре	Description	Value
Hazard Level		BSE-1E
SS	spectral response (0.2 s)	1.056
S ₁	spectral response (1.0 s)	0.35
S _{XS}	site-modified spectral response (0.2 s)	1.268
S _{X1}	site-modified spectral response (1.0 s)	0.682
F _a	site amplification factor (0.2 s)	1.2
F _v	site amplification factor (1.0 s)	1.95
Туре	Description	Value
Hazard Level		TL Data
T-Sub-L	Long-period transition period in seconds	8

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

1995 CACTUS CT

COLLAPSE PREVENTION BASIC CONFIGURTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS Table 17-1. Very Low Seismicity Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Structural Co	mponents		
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
C NC MA U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7.	5.7.1.1	A.5.1.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Table 17-2. Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low Seismici			
Building Syst			_
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. No adjacent buildings	5.4.1.2	A.2.1.2
C NC NA U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. No mezzanines	5.4.1.3	A.2.1.3
Building Syst	em—Building Configuration		
CNC N/A U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above.	5.4.2.1	A.2.2.2
CNC N/A U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. Lateral system is same for both	5.4.2.2	A.2.2.3
CNC N/A U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force- resisting system are continuous to the foundation.	5.4.2.3	A.2.2.4
CNC N/A U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines.	5.4.2.4	A.2.2.5
CNC N/A U	MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered.	5.4.2.5	A.2.2.6
C NC NA U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension.	5.4.2.6	A.2.2.7

continues

1995 CACTUS CT

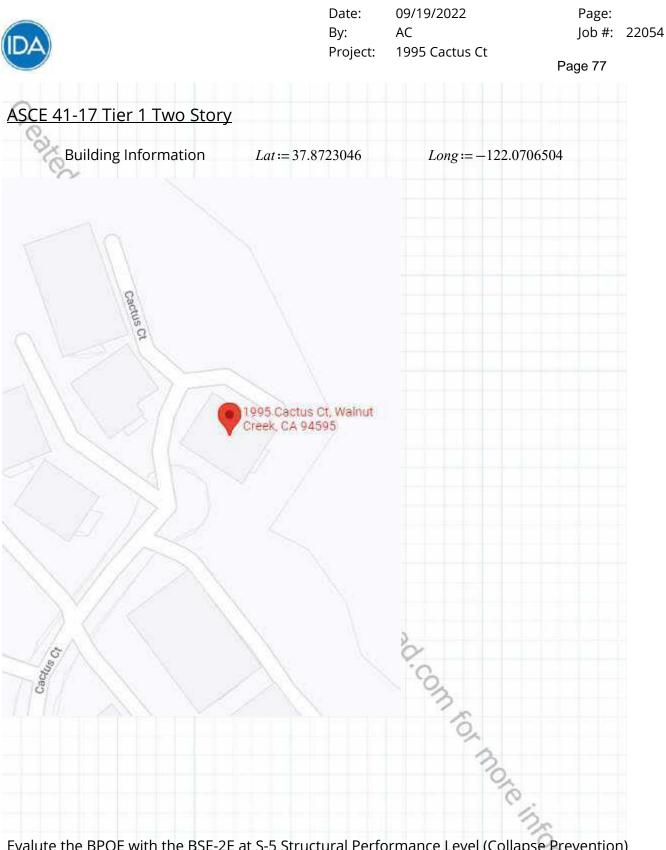
COLLAPSE PREVENTION BASIC CONFIGURTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS Table 17-2 (Continued). Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	smicity (Complete the Following Items in Addition to the Items for Low Seismi	city)	
Geologic Site			
CNC N/A U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building.	5.4.3.1	A.6.1.1
CNC N/A U	SLOPE FAILURE: The building site is located away from potential earthquake- induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure.	5.4.3.1	A.6.1.2
CNCN/AU	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. Calavares fault is close to site	5.4.3.1	A.6.1.3
High Seismici	ty (Complete the Following Items in Addition to the Items for Moderate Seism		
Foundation C	onfiguration	••	
CNC N/A U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force- resisting system at the foundation level to the building height (base/height) is greater than $0.6S_a$. See calc	5.4.3.3	A.6.2.1
CNC N/A U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C.	5.4.3.4	A.6.2.2

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Table 17-4. Collapse Prevention Structural Checklist for Building Types W1 and W1a

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	erate Seismicity		
	-Resisting System		
	REDUNDANCY: The number of lines of shear walls in each principal direction is	5.5.1.1	A.3.2.1.1
	greater than or equal to 2. Per record drawings		
CNC N/A U	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: See calc	5.5.3.1.1	A.3.2.7.1
	Structural panel sheathing 1,000 lb/ft (14.6 kN/m)		
	Diagonal sheathing 700 lb/ft (10.2 kN/m)		
	Straight sheathing 100 lb/ft (1.5 kN/m)		
~	All other conditions 100 lb/ft (1.5 kN/m)		
CNC N/A U	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system.	5.5.3.6.1	A.3.2.7.2
CNC N/A U	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building.	5.5.3.6.1	A.3.2.7.3
C NCN/A U	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. See F4	5.5.3.6.1	A.3.2.7.4
C NC N/AU	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. No details to verify	5.5.3.6.2	A.3.2.7.5
C NC N/A U	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1.	5.5.3.6.3	A.3.2.7.6


continues

<u>1995 CACTUS CT</u>

COLLAPSE PREVENTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS Table 17-4 (Continued). Collapse Prevention Structural Checklist for Building Types W1 and W1a Page 76

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels.	5.5.3.6.4	A.3.2.7.7
C NC MA U	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces.	5.5.3.6.5	A.3.2.7.8
Connections	Per detail 13/F1		
C NC N/A U	WOOD POSTS: There is a positive connection of wood posts to the foundation.	5.7.3.3	A.5.3.3
C NC N/A U	WOOD SILLS: All wood sills are bolted to the foundation. Per notes on T-1	5.7.3.3	A.5.3.4
C/NC N/A U	GIRDER–COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support.	5.7.4.1	A.5.4.1
High Seismici Connections	ty (Complete the Following Items in Addition to the Items for Low and Mode	rate Seismicit	y)
CNC N/A U	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft or less with acceptable edge and end distance provided for wood and concrete. Per notes on T-1	5.7.3.3	A.5.3.7
Diaphragms			
CNC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints.	5.6.1.1	A.4.1.1
CNC N/A U	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation.	5.6.1.1	A.4.1.3
	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	5.6.2	A.4.2.1
CNC N/A U	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing.	5.6.2	A.4.2.2
	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12 m) and have aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3
CNC N/A U	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Evalute the BPOE with the BSE-2E at S-5 Structural Performance Level (Collapse Prevention) and N-D Non structural performance Level (Hazards Reduced)

Compliance with BSE-2E implies compliance with BSE-1E 3-C Performance Objective (Life Safety Structural Non structural)

IDA		Date: By: Project:	09/19/2022 AC 1995 Cactus Ct	Page: Job #: Page 78	22054
RiskCatego	<i>vry</i> := "∏"				
BuildingTy	<i>pe</i> := "W1A"				
TC.					
$S_{XS} := 2.342$	$F_a := 1.2$	$F_{v} := 1.7$			
$S_{XS} = 2.342$ $S_{XI} \coloneqq 1.212$	u	<i>r_v</i> - 1.7			
	$S_s := 2.02$	$S_1 := 0.713$			
	X	2			
$S_{DS} := \frac{2}{3} \cdot F$	$S_a \cdot S_s = 1.62$	$S_{DI} \coloneqq \frac{2}{3} \cdot F_v \cdot S_I$	=0.81		
	12				
LevelOfSei	smicity≔"High"	Table 2-4			
	S				
	"O"				
For Tier 1, W	1A CP Checklists fro	om Table 17-4,			
	SS CHECK: The shea			-	
	neck procedure of Se anel sheathing	1000 lb/ft	s than the following	g values:	
Diagonal she	•	700 lb/ft			
Straight she	-	100 lb/ft			
All other cor	-	100 lb/ft			
		100 10/10			
	4.4.3.3 Shear Stress				
shear walls,	v, shall be calculate	d in accordance w	ith Eq. (4-8)		
٨	lote that the subscrir	t i has haan ramou	d since this is a one		
	lote that the subscrip tory building an j ind				
	lso been removed s				
	iso been removed a				
$v := \frac{1}{M_s} \cdot \left(\frac{V}{A_w}\right)$			2		
$M_s (A_w)$			1		
			0,		
			3		
16 45	Gustan				
$M_s := 4.5$	System	n modification fact	or; shall be taken fr	om Table 4-8	
A_w	Summ	ation of the horizo	ntal cross-sectional	area of all	
2 1 W			on of loading. Oper	0	
			where computing A		
			ea shall be used. F		
			shall be used rather		
	area			?	

Page: Job #: 22054

Page 79

Table 4-8. M _s Factors fo	or Sh	near W	alls			·			
			evel o	of Perfo	rmance				
Wall Type		CPa	r j	_S ^a	10 ^a				
Reinforced concrete, pre- concrete, wood, reinfor masonry, and cold-form steel Unreinforced masonry	ced	4.5 1.75		3. 0 1.25	1.5				
Table 4-7. Modification Facto	-	Number	of Sto	ories					
Building Type*	1	2	3	≥4					
Wood and cold-formed steel shear wall (W1, W1a, W2, CFS1) Moment frame (S1, S3, C1, PC2a)	1.3	1.1	1.0	1.0	20.42				
Shear wall (S4, S5, C2, C3, PC1a, PC2, RM2, URMa) Braced frame (S2) Cold-formed steel strap-brace wall (CFS2)	1.4	1.2	1.1	1.0	S. MANN DI	5			
Unreinforced masonry (URM) Flexible diaphragms (S1a, S2a, S5a, C2a, C3a, PC1, RM1)	1.0	1.0	1.0	1.0	1	othe			
* Defined in Table 3-1.						80			
						.(6		
							35		informatic
							9	~	
								30	
								0	
									25
									4

9	Project:	1995 Cactus Ct	Page 80
Determine V, the pseudo lateral forc	e from Equatior	1 4-1. V is a fund	ction of
 <i>C</i>, modification factor to relate edisplacements calculated for line 4-7 			-
• <i>S_a</i> , the response spectral acceler building in the diretion under co accordance with Section 4.4.2.3			
• <i>W</i> , the total dead load			
Building type		W1A	
tope		<i>C</i> ≔ 1.1	Factor for TWO stor building.
Determine S _a			
1 second period spectral accele BSE-2E	ration of the	$S_{XI} = 1.2$	212
	42		
Short period spectral acceleration	on of the BSE-1I		
Design	.3	$S_{XS} = 2.2$	342
Factor per table 4-8	90	$M_s = 4.5$	5
Determine T		°.Co.	
Coefficient to determine buildin	ng period	$C_t \coloneqq 0.0$ $h \coloneqq 19$)20
Height in feet above the base to	o the roof level	$h_n := 19$	ft=19 ft
		$\beta := 0.75$	5 for all other
Fundamental period of vibration calculated in accordance with Se	-	$T := C_t \cdot$	ft = 19 ft for all other $\left(\frac{h_n}{1 ft}\right)^{\beta} = 0.182$
$S_a := \min\left(\frac{S_{XI}}{T}, S_{XS}\right) = 2.342$	Equatio	n 4-3 from 4.4.2	0.

Page: Job #: 22054

1		
ς,	Overturning	

Minimum base dimension of C2A base = 45 ft = 45 ft

$$\frac{base}{h_n} = 2.37$$

 $0.6 \cdot S_a = 1.41$

Overturning := if
$$\left(\frac{base}{h_n} > 0.6 \cdot S_a, \text{``Compliant''}, \text{``Non compliant''}\right)$$

Overturning = "Compliant"

Per commentary if building is well connected can use building dimensions, not individual shear wall lengths

A.6.2.1 Overturning. The ratio of the horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.65_a.

The concentration of seismic overturning forces in foundation elements may exceed the capacity of the soil, the foundation structure, or both. The effective horizontal dimension should be determined based on the ability of the seismic-force-resisting elements to act as a system. Therefore, the building dimension can be used if the elements are well connected. However, multiple checks may be required for elements isolated on opposite sides of the building.

Date: By: Project:	09/19/2022 AC 1995 Cactus Ct	Page: Job #: 22054 Page 82
ometry		
	$h \coloneqq \begin{bmatrix} 9 \ ft \\ 18 \ ft \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$	$\binom{9}{18}$ ft
	$A_{wNS} \coloneqq \begin{bmatrix} 225 \ ft \\ 225 \ ft \end{bmatrix}$]
	$A_{wEW} \coloneqq \begin{bmatrix} 200 \ fi \\ 200 \ fi \end{bmatrix}$	
	RoofArea := 474 FloorArea := 47	
WallPerimet	$er \coloneqq (75 \ \mathbf{ft} \cdot 2) + (75 \ \mathbf{ft})$	$(t \cdot 4) = 450 \ ft$
	WallWeight := 2	20 <i>psf</i>
	RoofWeight := 2	20 <i>psf</i>
	FloorWeight :=	30 <i>psf</i>
+ WallWeight• WallWeight• W	WallPerimeter • 9 ft VallPerimeter • 4.5 ft	$= \begin{bmatrix} 223.2\\135.3 \end{bmatrix} kip$
$W := \sum_{i=1}^{\text{length}}$	$\sum_{i=1}^{n(w)} w_i = 358.5 \ kip$	
	ad.com for more	inform
	Project: ometry WallPerimet + WallWeight • WallWeight • W	Project: 1995 Cactus Ct ometry $h := \begin{bmatrix} 9 & ft \\ 18 & ft \end{bmatrix} = \begin{bmatrix} 225 & ft \\ 225 & ft \end{bmatrix}$ $A_{wNS} := \begin{bmatrix} 200 & ft \\ 200 & ft \end{bmatrix}$ $RoofArea := 47 + FloorArea := $

H:\2022 JOBS\22054 Rossmoor TWCM Seismic Study 5 buildings\03 Engineering\1905 Cactus Ct\Building 3.mcdx

A		Date: By: Project:	09/19/2022 AC 1995 Cactus Ct	Page: Job #: 22054 Page 83
2	Psuedo seismic force			
Care	Psuedo seismic force per 4.4.2.1 Eq. 4-1		$V \coloneqq C \cdot S_a \cdot W = 924 \ k$	ip
.0	factor per 4.4.2.2		$k \coloneqq \mathbf{if}(T > 2.5, 2, \mathbf{if}(T))$	$T \le 0.5, 1, 0.5 \cdot T + 0.75) = 1$
	factor per 4.4.2.2 $x \coloneqq 1 \dots 2$ $j \coloneqq 1 \dots 2$ Floors $\coloneqq 2$ Vertical distribution of psuedo seismic force per 4.5.2.2 Eq 4-3a		$F_{x} \coloneqq \frac{w_{x} \cdot h_{x}^{k}}{\sum_{i=1}^{2} w_{i} \cdot h_{i}^{k}} \cdot V \equiv$	$\begin{bmatrix} 417\\506 \end{bmatrix} kip$
	Story shear at story level j		$V_{j} \coloneqq \sum_{x=j}^{Floors} F_{x} = \begin{bmatrix} 924\\506 \end{bmatrix}$	kip
	Shear stress in shear walls in north south direction		$v_{NS} \coloneqq \frac{1}{M_s} \cdot \frac{V}{A_{wNS}} = \begin{bmatrix} 9\\4 \end{bmatrix}$	12.17 99.86] <i>plf</i>

 $v_{EW} := \frac{1}{M_s} \cdot \frac{V}{A_{wEW}} = \begin{bmatrix} 1026.19\\562.35 \end{bmatrix} plf$

Shear stress in shear walls in east west direction

10%)

Shear Stress is slightly more than 1000 plf in E-W (<10%)

APPENDIX D BUILDING 4 2516 PTARMIGAN DRIVE


Oakland | Portland | ida-se.com

2516 Ptarmigan Dr, Walnut Creek, CA 94595, USA

Latitude, Longitude: 37.8575956, -122.0717157

Туре	Description	Value
Hazard Level		Page 86
S _S	spectral response (0.2 s)	2.033
S ₁	spectral response (1.0 s)	0.722
S _{XS}	site-modified spectral response (0.2 s)	2.44
S _{X1}	site-modified spectral response (1.0 s)	1.228
f _a	site amplification factor (0.2 s)	1.2
f _v	site amplification factor (1.0 s)	1.7
Туре	Description	Value
Hazard Level		BSE-1E
S _S	spectral response (0.2 s)	1.065
S ₁	spectral response (1.0 s)	0.354
S _{XS}	site-modified spectral response (0.2 s)	1.278
S _{X1}	site-modified spectral response (1.0 s)	0.689
F _a	site amplification factor (0.2 s)	1.2
F _v	site amplification factor (1.0 s)	1.946
Туре	Description	Value
Hazard Level		TL Data
T-Sub-L	Long-period transition period in seconds	8

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

2516 PTARMIGAN COLLAPSE PREVENTION BASIC CONFIGURTION CHECKLIST Table 17-1. Very Low Seismicity Checklist

Page 87

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Structural Co	mponents		
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
C NC MA U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7.	5.7.1.1	A.5.1.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Table 17-2. Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low Seismici	•		
Building Syst			
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. No adjacent buildings	5.4.1.2	A.2.1.2
C NC NA U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. No mezzanines	5.4.1.3	A.2.1.3
Building Syst	em—Building Configuration		
C NC N/A U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above.	5.4.2.1	A.2.2.2
	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above.	5.4.2.2	A.2.2.3
CNC N/A U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force- resisting system are continuous to the foundation.	5.4.2.3	A.2.2.4
C NC N/A U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines.	5.4.2.4	A.2.2.5
	MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered.	5.4.2.5	A.2.2.6
C NC NA U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension.	5.4.2.6	A.2.2.7

continues

2516 PTARMIGAN <u>COLLAPSE PREVENTION BASIC CONFIGURTION CHECKLIST</u> Table 17-2 (Continued). Collapse Prevention Basic Configuration Checklist

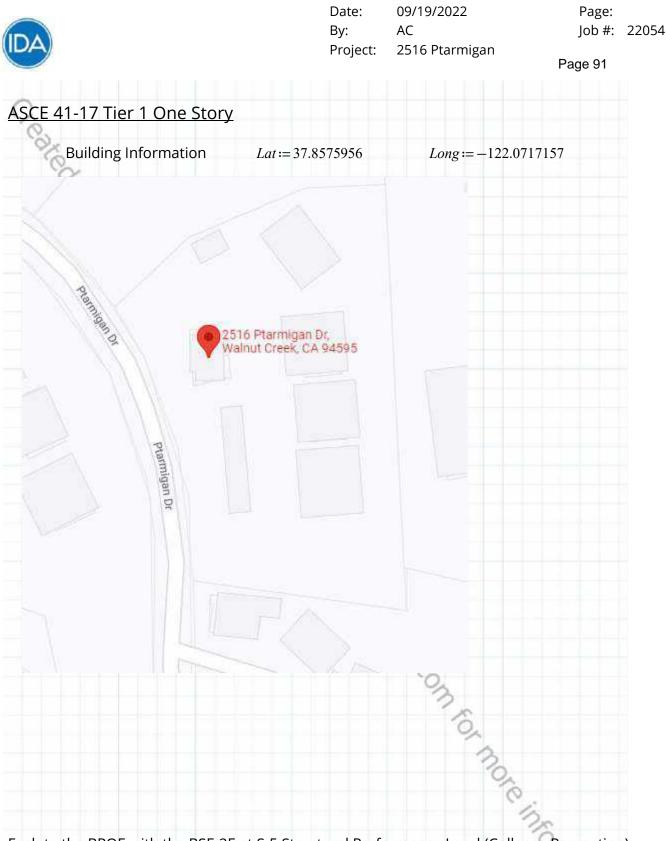
Page 88

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Moderate Seis	micity (Complete the Following Items in Addition to the Items for Low Seismi	city)	
CNC N/A U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building.	5.4.3.1	A.6.1.1
CNC N/A U	SLOPE FAILURE: The building site is located away from potential earthquake- induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure.	5.4.3.1	A.6.1.2
CNCN/AU	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. Calavares fault is close to site	5.4.3.1	A.6.1.3
High Seismici	ty (Complete the Following Items in Addition to the Items for Moderate Seism		
Foundation Co	onfiguration		
CNC N/A U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force- resisting system at the foundation level to the building height (base/height) is greater than $0.6S_a$. See calc	5.4.3.3	A.6.2.1
C NC N/AU	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C.	5.4.3.4	A.6.2.2

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Table 17-4. Collapse Prevention Structural Checklist for Building Types W1 and W1a

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	erate Seismicity		
C NC N/A U	REDUNDANCY: The number of lines of shear walls in each principal direction is	5.5.1.1	A.3.2.1.1
	greater than or equal to 2.	5.5.1.1	A.0.2.1.1
CNC N/A U	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values:	5.5.3.1.1	A.3.2.7.1
	Structural panel sheathing 1,000 lb/ft (14.6 kN/m)		
	Diagonal sheathing 700 lb/ft (10.2 kN/m)		
	Straight sheathing 100 lb/ft (1.5 kN/m)		
	All other conditions 100 lb/ft (1.5 kN/m)		
CNC N/A U	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system.	5.5.3.6.1	A.3.2.7.2
	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building.	5.5.3.6.1	A.3.2.7.3
	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces.	5.5.3.6.1	A.3.2.7.4
	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. No details to verify	5.5.3.6.2	A.3.2.7.5
	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1.	5.5.3.6.3	A.3.2.7.6


continues

2516 PTARMIGAN

COLLAPSE PREVENTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS Table 17-4 (Continued). Collapse Prevention Structural Checklist for Building Types W1 and W1a Page 90

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels.	5.5.3.6.4	A.3.2.7.7
	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces.	5.5.3.6.5	A.3.2.7.8
Connections	Per detail 11/TS-1		
C NC N/A U	WOOD POSTS: There is a positive connection of wood posts to the foundation.	5.7.3.3	A.5.3.3
C NC N/A U	WOOD SILLS: All wood sills are bolted to the foundation. NO DETAIL FOUND	5.7.3.3	A.5.3.4
C NC N/A U	GIRDER–COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support.	5.7.4.1 etails not av	A.5.4.1 ailable
	ty (Complete the Following Items in Addition to the Items for Low and Modera	ate Seismicit	y)
Connections C NC N/A U	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft or less with acceptable edge and end distance provided for wood and concrete.	5.7.3.3	A.5.3.7
Diaphragms			
C NC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints.	5.6.1.1	A.4.1.1
C NC N/A U	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation.	5.6.1.1	A.4.1.3
	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	5.6.2	A.4.2.1
CNC N/A U	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing.	5.6.2	A.4.2.2
	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12 m) and have aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3
CNC N/A U	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Evalute the BPOE with the BSE-2E at S-5 Structural Performance Level (Collapse Prevention) and N-D Non structural performance Level (Hazards Reduced)

Compliance with BSE-2E implies compliance with BSE-1E 3-C Performance Objective (Life Safety Structural Non structural)

IDA		Date: By: Project:	09/19/2022 AC 2516 Ptarmigan	Page: Job #: 220! Page 92
RiskCategory :=	="II"			
BuildingType :=	="W1A" Mu	ıltistory, multiun	it residential	
S.				
$S_{XS} := 2.44$ $S_{XI} := 1.228$	$F_a := 1.2$	$F_v := 1.7$		
SXI	$S_s := 2.033$	$S_I := 0.722$		
2		2		
$S_{DS} := \frac{2}{3} \cdot F_a \cdot S_s$	s = 1.63	$S_{DI} := \frac{2}{3} \cdot F_{v} \cdot S_{I}$	= 0.82	
	3			
LevelOfSeismic	<i>city</i> ≔ "High"	Table 2-4		
	8			
	"O'			
For Tier 1, W1A	CP Checklists from	n Table 17-4,		
		stross in the she	ar walls, calculated u	using
			is than the following	
Structural panel		1000 lb/ft	is than the following	values.
Diagonal sheath	0	700 lb/ft		
Straight sheathi	0	100 lb/ft		
All other conditi		100 lb/ft		
		2		
			ne average stress in	
shear walls, v, s	hall be calculated	in accordance w	ith Eq. (4-8)	
Nota	that the subscript	i has been remov	ed since this is a one	
	building an j indice		rd to do in Mathcad	
aiso	been removed sin	ice it seemed hai		
$v := \frac{1}{M_s} \cdot \left(\frac{V}{A_w}\right)$			02	
M_s (A_w)			2	
			0	
			2	
			20.	
$M_s := 4.5$	System r	modification fact	or; shall be taken fro	om Table 4-8
A_w	Summat	ion of the horizo	ntal cross-sectional	area of all
Ψν.			on of loading. Open	C
			where computing A	
			rea shall be used. Fo	· · · · · · · · · · · · · · · · · · ·
			shall be used rather	1 day
	area			2
	urcu			

Page: Job #: 22054

Page 93

Table 4-8. M _s Factors fo	5									
Mell Trees		CP ^a	9353918	of Perfo	rmance IO ^a					
Wall Type Reinforced concrete, pre- concrete, wood, reinfor masonry, and cold-forr steel Unreinforced masonry	rced	4.5 1.75	3	.0	1.5					
Occupancy. Table 4-7. Modification Facto	-	Number	of Sto	ries						
Building Type*	1	2	3	≥4						
Wood and cold-formed steel shear wall (W1, W1a, W2, CFS1) Moment frame (S1, S3, C1, PC2a)	1.3	1.1	1.0	1.0	204					
Shear wall (S4, S5, C2, C3, PC1a, PC2, RM2, URMa) Braced frame (S2) Cold-formed steel strap-brace wall (CFS2)	1.4	1.2	1.1	1.0	e. Man Di	3				
Unreinforced masonry (URM) Flexible diaphragms (S1a, S2a, S5a, C2a, C3a, PC1, RM1)	1.0	1.0	1.0	1.0		arro				
* Defined in Table 3-1.	-		0.0			80	t I			
						(02			
							2	5		
							0	1		
								20	~	
									0%	
									17	5

	Project:	2516 Pt	armigan	Page 94
2				
Determine V , the pseudo lateral force from	n Equatior	n 4-1. <i>V</i>	is a functio	on of
 C, modification factor to relate expect displacements calculated for linear ela 4-7 				
 S_a, the response spectral acceleration building in the diretion under consider accordance with Section 4.4.2.3 				
• <i>W</i> , the total dead load				
Building type			W1A	
ton			C:=1.3	Factor for One stor
Determine S _a				
1 second period spectral acceleration BSE-2E	n of the		$S_{XI} = 1.228$	
4	2			
Short period spectral acceleration of Design	the BSE-11	N	$S_{XS} = 2.44$	
Factor per table 4-8	90	NC3	$M_s = 4.5$	
Determine T		.CO		
Coefficient to determine building per	iod		C _t := 0.020	
Height in feet above the base to the r	roof level		$h_n := 19 ft$	= 19 <i>ft</i>
			$\beta \coloneqq 0.75$	for all other
Fundamental period of vibration of th calculated in accordance with Section		, ,	$\beta := 0.75$ $T := C_t \cdot \left(\frac{h}{1}\right)$	$\left(\frac{b_n}{ft}\right)^{\beta} = 0.182$
$S_a := min\left(\frac{S_{XI}}{T}, S_{XS}\right) = 2.44$	Equatio		om 4.4.2.3	lon.

Overturning Minimum base dimension of C2A base := 40 ft = 40 ftbase = 2.11 $0.6 \cdot S_a = 1.46$ h_n *Overturning* := if $\left(\frac{base}{h_n} > 0.6 \cdot S_a, \text{``Compliant''}, \text{``Non compliant''}\right)$ Overturning = "Compliant" Per commentary if building is well connected can use building dimensions, not individual shear wall lengths A.6.2.1 Overturning. The ratio of the horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6S_a. The concentration of seismic overturning forces in foundation elements may exceed the capacity of the soil, the foundation structure, or both. The effective horizontal dimension should be determined based on the ability of the seismic-force-resisting elements to act as a system. Therefore, the building dimension s incad.com for more information. can be used if the elements are well connected. However, multiple checks may be required for elements isolated on opposite sides of the building.

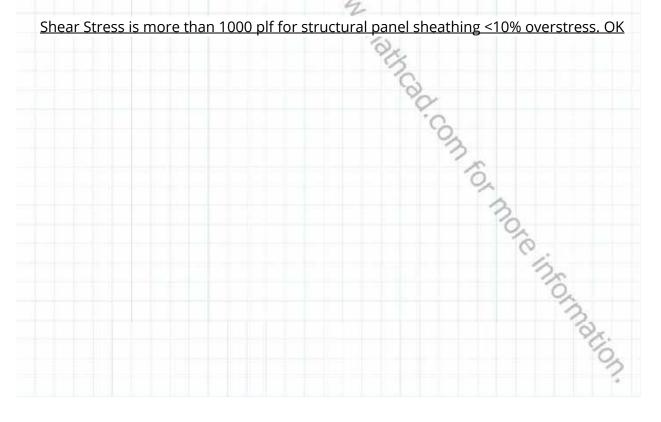
	Date: By: Project:	09/19/2022 AC 2516 Ptarmigan	Page: Job #: Page 96	22054
Two story portion Weigh up and Ge	ometry			
Floor heights from base		$h \coloneqq \begin{bmatrix} 9 & ft \\ 0 & ft \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \end{bmatrix}$	ft	
Area of walls in north south direction in		$A_{wNS} \coloneqq \begin{bmatrix} 65 \ ft \\ 1 \ ft \end{bmatrix}$ $A_{wEW} \coloneqq \begin{bmatrix} 65 \ ft \\ 1 \ ft \end{bmatrix}$		
2		$A_{wEW} \coloneqq \begin{bmatrix} 0 & ft \\ 1 & ft \end{bmatrix}$		
1		RoofArea := 2400) ft^2	
CMathcad		FloorArea := 240		
- Charles - Char				
9	WallPerimet	$er := (66 \ ft \cdot 2) + (23.5 \ f$	$(t \cdot 2) = 179 ft$	
Weight of roof and walls		WallWeight := 20	psf	
trib to roof				
9		RoofWeight := 20	psf	
S.		FloorWeight := 0	psf	
S.			F - J	
$w := \begin{bmatrix} FloorArea \cdot FloorWeight - RoofArea \cdot RoofWeight + FloorWeight +$	+ WallWeight• WallWeight• W	$WallPerimeter \cdot 9 ft \\ VallPerimeter \cdot 4.5 ft \end{bmatrix} = $	[32.22] 64.11] <i>kip</i>	
Total seismic weight of	$W := \sum$	w = 96.33 kip		
structure	j≓	i		
	1	8		
		Q.		
		CO_		
		3		
		0		
		3		
		0,		
		0		
		1	20	
			0/2	
			20	
			"Ci	
			3	

H:\2022 JOBS\22054 Rossmoor TWCM Seismic Study 5 buildings\03 Engineering\2516 Ptarmigan\ASCE 41 Tier 1 Quick Check - Two story.mcdx

IDA		Date: By: Project:	09/19/2022 AC 2516 Ptarmigan	Page: Job #: 22054 Page 97
0	Psuedo seismic force			
Veste	Psuedo seismic force per 4.4.2.1 Eq. 4-1		$V \coloneqq C \cdot S_a \cdot W = 306 \ kip$	
-0	factor per 4.4.2.2		$k \coloneqq \mathbf{if}(T > 2.5, 2, \mathbf{if}(T \le$	$(0.5, 1, 0.5 \cdot T + 0.75)) = 1$
	x := 12 j := 12 Floors := 2		$w \cdot h^k$	
	Vertical distribution of psuedo seismic force per 4.5.2.2 Eq 4-3a		$F_{x} \coloneqq \frac{w_{x} \cdot h_{x}^{k}}{\sum_{i=1}^{2} w_{i} \cdot h_{i}^{k}} \cdot V = \begin{bmatrix} 3 \\ \end{bmatrix}$	$\begin{bmatrix} 06\\0 \end{bmatrix}$ <i>kip</i>

Story shear at story level j

Shear stress in shear walls in north south direction


Shear stress in shear walls in east west direction

 $v_{EW} \coloneqq \frac{1}{M_s} \cdot \frac{V}{A_{wEW}} = \begin{bmatrix} 1044.65 \\ 0 \end{bmatrix} plf$

 $v_{NS} \coloneqq \frac{1}{M_s} \cdot \frac{V}{A_{WNS}} = \begin{bmatrix} 1044.65 \\ 0 \end{bmatrix} plf$

 $V_{j} \coloneqq \sum_{x=j}^{Floors} F_{x} = \begin{bmatrix} 306\\ 0 \end{bmatrix} kip$

Shear Stress is more than 1000 plf for structural panel sheathing <10% overstress. OK

APPENDIX E BUILDING 5 3101 TERRA GRANADA DRIVE

Oakland | Portland | ida-se.com

3101 Terra Granada Dr, Walnut Creek, CA 94595, USA

Latitude, Longitude: 37.8545483, -122.0681867

Google	Ptarmigan Or tena	Divorce Mediatio Service of Walnut Cree Pa Dr Terra Granada Dr Terra Granada Dr Terra Granada Dr Terra Granada Dr	Tice Creek Dr
Date		10/31/2022, 12:48:39 AM	
Design Code Reference Documer	nt	ASCE41-17	
Custom Probability Site Class		D - Default (See Section 11.4.3)	
Type Hazard Level	Description	, /	Value BSE-2N
SS	spectral response (0.2 s)		2.151
S ₁	spectral response (1.0 s)		0.798
S _{XS}	site-modified spectral response (0.2 s)		2.581
S _{X1}	site-modified spectral response (1.0 s)		1.356
Fa	site amplification factor (0.2 s)		1.2
F _v	site amplification factor (1.0 s)		1.7
ssuh	max direction uniform hazard (0.2 s)		2.823
crs	coefficient of risk (0.2 s)		0.924
ssrt	risk-targeted hazard (0.2 s)		2.609
ssd	deterministic hazard (0.2 s)		2.151
s1uh	max direction uniform hazard (1.0 s)		1.037
cr1	coefficient of risk (1.0 s)		0.909
s1rt	risk-targeted hazard (1.0 s)		0.942
s1d	deterministic hazard (1.0 s)		0.798
Type Hazard Level	Description		Value BSE-1N
S _{XS}	site-modified spectral response (0.2 s)		1.721
S _{X1}	site-modified spectral response (1.0 s)		0.904

Туре	Description	Value
Hazard Level		₽ag e §¶ØÐ
S _S	spectral response (0.2 s)	2.043
S ₁	spectral response (1.0 s)	0.726
S _{XS}	site-modified spectral response (0.2 s)	2.452
S _{X1}	site-modified spectral response (1.0 s)	1.234
f _a	site amplification factor (0.2 s)	1.2
f _v	site amplification factor (1.0 s)	1.7
Туре	Description	Value
Hazard Level		BSE-1E
S _S	spectral response (0.2 s)	1.069
S ₁	spectral response (1.0 s)	0.355
S _{XS}	site-modified spectral response (0.2 s)	1.282
S _{X1}	site-modified spectral response (1.0 s)	0.691
F _a	site amplification factor (0.2 s)	1.2
F _v	site amplification factor (1.0 s)	1.945
Туре	Description	Value
Hazard Level		TL Data
T-Sub-L	Long-period transition period in seconds	8

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

3101 TERRA GRANADA COLLAPSE PREVENTION BASIC CONFIGURTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS Table 17-1. Very Low Seismicity Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Structural Co	mponents		
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
C NC MA U	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have adequate strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7.	5.7.1.1	A.5.1.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Table 17-2. Collapse Prevention Basic Configuration Checklist

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
Low Seismici	•		
Building Syst			
CNC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation.	5.4.1.1	A.2.1.1
	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. No adjacent buildings	5.4.1.2	A.2.1.2
C NC N/A U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. No mezzanines	5.4.1.3	A.2.1.3
Building Syst	em—Building Configuration		
CNC N/A U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above.	5.4.2.1	A.2.2.2
CNC N/A U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. Lateral system is same for both	5.4.2.2	A.2.2.3
CNC N/A U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force- resisting system are continuous to the foundation.	5.4.2.3	A.2.2.4
CNC N/A U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines.	5.4.2.4	A.2.2.5
CNC N/A U	MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered.	5.4.2.5	A.2.2.6
C NC NA U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension.	5.4.2.6	A.2.2.7

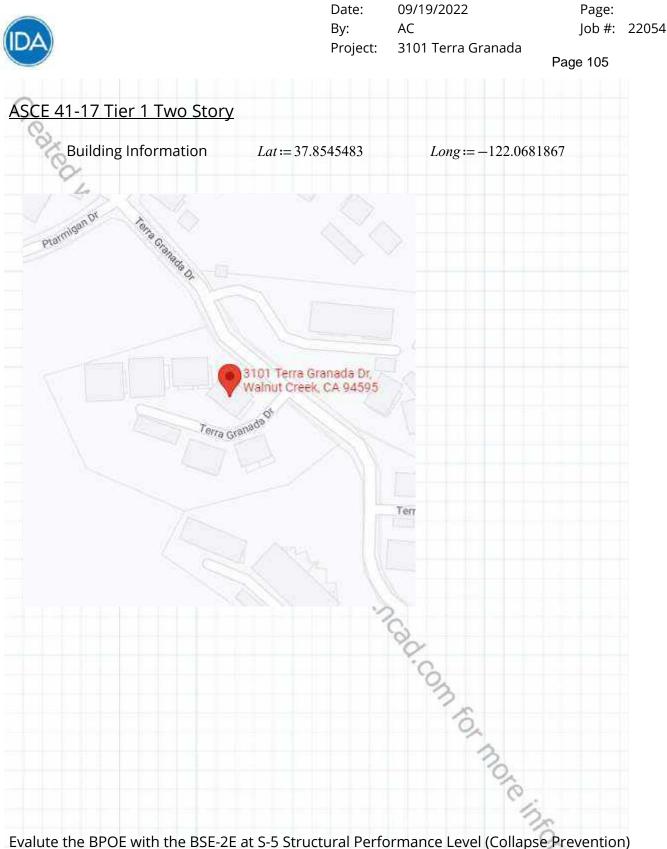
<u>3101 TERRA GRANADA</u> <u>COLLAPSE PREVENTION BASIC CONFIGURTION CHECKLIST FOR TYPICAL TWO-STORY BUILDINGS</u> <u>Table 17-2 (Continued). Collapse Prevention Basic Configuration Checklist</u> Page 102

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	micity (Complete the Following Items in Addition to the Items for Low Seismi	city)	
Geologic Site	Hazards		
CNC N/A U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building.	5.4.3.1	A.6.1.1
CNC N/A U	SLOPE FAILURE: The building site is located away from potential earthquake- induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure.	5.4.3.1	A.6.1.2
CNCN/AU	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. Calavares fault is close to site	5.4.3.1	A.6.1.3
High Seismici	ty (Complete the Following Items in Addition to the Items for Moderate Seism		
Foundation Co	onfiguration		
C NC N/A U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force- resisting system at the foundation level to the building height (base/height) is greater than $0.6S_a$. See calc	5.4.3.3	A.6.2.1
C NC N/AU	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C.	5.4.3.4	A.6.2.2

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

Table 17-4. Collapse Prevention Structural Checklist for Building Types W1 and W1a

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	erate Seismicity		
CNC N/A U	-Resisting System REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2.	5.5.1.1	A.3.2.1.1
CNCN/AU	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values:	5.5.3.1.1	A.3.2.7.1
	Structural panel sheathing1,000 lb/ft (14.6 kN/m)Diagonal sheathing700 lb/ft (10.2 kN/m)Straight sheathing100 lb/ft (1.5 kN/m)All other conditions100 lb/ft (1.5 kN/m)		
CNC N/A U	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system.	5.5.3.6.1	A.3.2.7.2
CNC N/A U	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building.	5.5.3.6.1	A.3.2.7.3
C NC N/AU	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces.	5.5.3.6.1	A.3.2.7.4
CNC N/A U	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor.	5.5.3.6.2	A.3.2.7.5
C NC NA U	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1.	5.5.3.6.3	A.3.2.7.6


Downloaded from ascelibrary org by Jon Kiland on 08/02/18. Copyright ASCE. For personal use only; all rights reserved.

continues

Table 17-4 (Continued). Collapse Prevention Structural Checklist for Building Types W1 and W1a Page 104

Status	Evaluation Statement	Tier 2 Reference	Commentary Reference
	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels.	5.5.3.6.4	A.3.2.7.7
C NC NA U	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces.	5.5.3.6.5	A.3.2.7.8
Connections			
C NC N/A U	WOOD POSTS: There is a positive connection of wood posts to the foundation.	5.7.3.3	A.5.3.3
C NC N/A U	WOOD SILLS: All wood sills are bolted to the foundation. No plans/details to	verif5y.7.3.3	A.5.3.4
C NC N/AU	GIRDER–COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support.	5.7.4.1 Details not av	A.5.4.1 ailable
High Seismicit	ty (Complete the Following Items in Addition to the Items for Low and Mode	erate Seismicit	y)
Connections C NC N/A U	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft or less with acceptable edge and end distance provided for wood and concrete. No plans/details to verify	5.7.3.3	A.5.3.7
Diaphragms			
CNC N/A U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints.	5.6.1.1	A.4.1.1
CNC N/A U	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation.	5.6.1.1	A.4.1.3
C NC N/A U	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	5.6.2	A.4.2.1
CNC N/A U	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing.	5.6.2	A.4.2.2
	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12 m) and have aspect ratios less than or equal to 4-to-1.	5.6.2	A.4.2.3
CNC N/A U	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing.	5.6.5	A.4.7.1

Note: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown.

and N-D Non structural performance Level (Hazards Reduced)

Compliance with BSE-2E implies compliance with BSE-1E 3-C Performance Objective (Life Safety Structural Non structural)

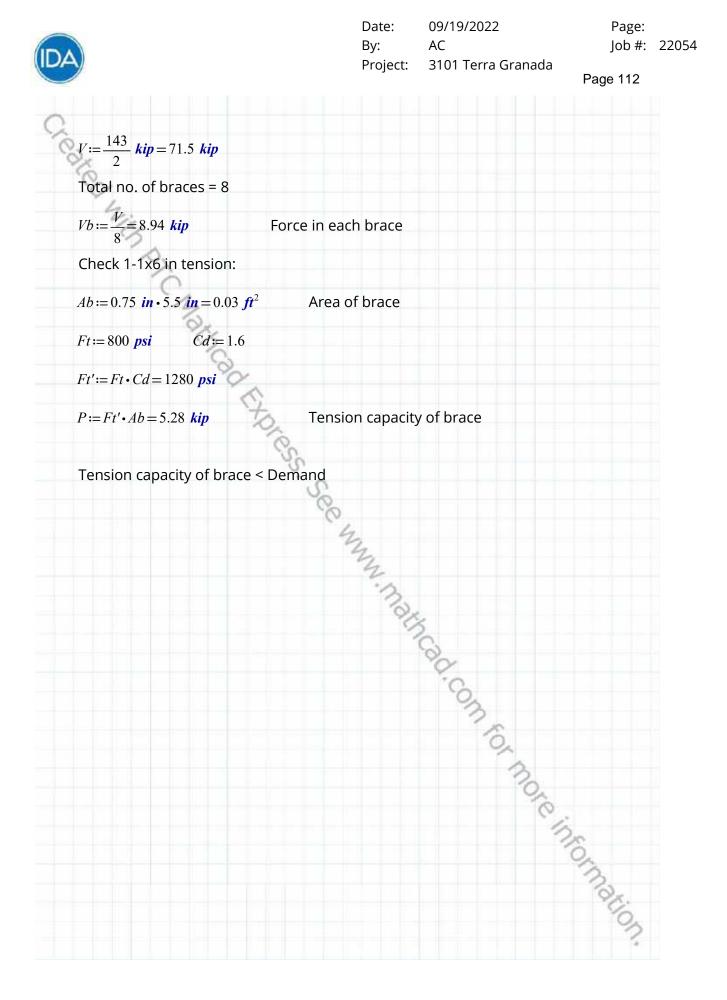
IDA		Date: By: Project:	09/19/2022 AC 3101 Terra Granada	Page: Job #: 2 Page 106	22054
RiskCategory := ``	·II''				
BuildingType := "	W1A"				
C.					
$S_{XS} := 2.452$	$F_a := 1.2$	$F_{v} := 1.7$			
$S_{XS} = 2.432$ $S_{XI} := 1.234$	$I_a = 1.2$	$T_{v} = 1.7$			
	$S_s := 2.043$	$S_1 := 0.726$			
~	5				
$S_{DS} := \frac{2}{3} \cdot F_a \cdot S_s =$	= 1.63	$S_{DI} \coloneqq \frac{2}{3} \cdot F_v \cdot S_I$	= 0.82		
3 1		3			
0	x,				
LevelOfSeismicit	v≔"High"	Table 2-4			
	S				
For Tier 1, W1A Cl	Chacklists from	Table 17-4			
	CHECKIStS ITON	11001017-4,			
SHEAR STRESS CH	IFCK: The shear	stress in the she	ar walls, calculated us	sing	
	1.1.1		s than the following v		
Structural panel s		1000 lb/ft			
Diagonal sheathir	0	700 lb/ft			
Straight sheathing	•	100 lb/ft			
All other condition		100 lb/ft			
		3			
		The second se	he average stress in		
shear walls, v, sh	all be calculated	in accordance w	ith Eq. (4-8)		
Note th	nat the subscript	i has heen remov	ed since this is a one		
			perscript avg has		
			rd to do in Mathcad		
			.0		
$v := \frac{1}{M_s} \cdot \left(\frac{V}{A_w}\right)$			3		
M_s (A_w)			15		
			0,		
			3		
16 45	Gustan				
$M_s := 4.5$	System	noonication fact	or; shall be taken fror	n Table 4-8	
4	Summat	ion of the borizo	ntal cross-sectional a	rea of all	
A_w			on of loading. Openin	0	
			where computing A_w		
			rea shall be used. For		
	-		shall be used rather t	100	
	area			?	

Page: Job #: 22054

Page 107

VStory shear computed in accordance with Section 4.4.2.2 Table 4-8. Ms Factors for Shear Walls Level of Performance CPa LSa 10^a Wall Type Reinforced concrete, precast 4.5 3.0 1.5 concrete, wood, reinforced masonry, and cold-formed steel Unreinforced masonry 1.75 1.25 1.0 ^a CP = Collapse Prevention, LS = Life Safety, IO = Immediate Occupancy. 0 Table 4-7. Modification Factor, C Number of Stories **Building Type*** 1 2 3 24 e www.mathcad.com.for more information. 1.0 Wood and cold-formed steel 1.3 1.0 1.1 shear wall (W1, W1a, W2, CFS1) Moment frame (S1, S3, C1, PC2a) Shear wall (S4, S5, C2, C3, 1.4 1.2 1.1 PC1a, PC2, RM2, URMa) Braced frame (S2) Cold-formed steel strap-brace wall (CFS2) Unreinforced masonry (URM) 1.0 1.0 1.0 Flexible diaphragms (S1a, S2a, S5a, C2a, C3a, PC1, FIM1) * Defined in Table 3-1.

			J III
S			
Determine <i>V</i> , the pseudo lateral force fr	om Equation 4-1	. V is a function	on of
Se la			
 C, modification factor to relate expension displacements calculated for linear 4-7 			
• S_a , the response spectral acceleration	on at the fundar	nentla period c	of the
building in the diretion under consid		-	
accordance with Section 4.4.2.3	u		
• <i>W</i> , the total dead load			
2			
Building type		W1A	
to,		<i>C</i> ≔ 1.1	Factor for TWO story building.
Determine S _a			J
1 second period spectral accelerati	ion of the	$S_{XI} = 1.234$	1
BSE-2E	0	AI	
	4		
	3		
Short period spectral acceleration	of the BSE-1N	8 - 2 452)
Design	2	$S_{XS} = 2.452$	2
Factor per table 4-8	"h	$M_{s} = 4.5$	
	3	~	
Determine T	Y	6	
Coefficient to determine building p	eriod	$C_t := 0.020$	
		0	
Height in feet above the base to th	e roof level	$h_n := 19 ft$	= 19 <i>ft</i>
		0,	2
		$\beta := 0.75$	for all other
Fundamental period of vibration of calculated in accordance with Secti		$\beta := 0.75$ $T := C_t \cdot \left(\frac{\beta}{1}\right)$	$\left(\frac{h_n}{ft}\right)^{\beta} = 0.182$
$S_a := min\left(\frac{S_{XI}}{T}, S_{XS}\right) = 2.452$			"C


Page 109

Overturning Minimum base dimension of C2A base := 30 ft = 30 ft $\frac{base}{h_n} = 1.58$ $0.6 \cdot S_a = 1.47$ *Overturning* := if $\left(\frac{base}{h_n} > 0.6 \cdot S_a, \text{``Compliant''}, \text{``Non compliant''}\right)$ Overturning = "Compliant" Per commentary if building is well connected can use building dimensions, not individual shear wall lengths A.6.2.1 Overturning. The ratio of the horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6S_a. The concentration of seismic overturning forces in foundation elements may exceed the capacity of the soil, the foundation structure, or both. The effective horizontal dimension should be determined based on the ability of the seismic-force-resisting elements to act as a system. Therefore, the building dimension s Incad.com for more information. can be used if the elements are well connected. However, multiple checks may be required for elements isolated on opposite sides of the building.

Two stary partian Weigh up and Coo	Date: By: Project:	09/19/2022 AC 3101 Terra Granada	Page: Job #: 22054 Page 110
Two story portion Weigh up and Geo	metry		
Floor heights from base		$h \coloneqq \begin{bmatrix} 9 \ ft \\ 18 \ ft \end{bmatrix} = \begin{bmatrix} 9 \\ 18 \end{bmatrix}$] ft
Area of walls in north south direction in		$A_{wNS} \coloneqq \begin{bmatrix} 28 & ft \\ 28 & ft \end{bmatrix}$ $A_{wEW} \coloneqq \begin{bmatrix} 20 & ft \\ 20 & ft \end{bmatrix}$	
P/		$A_{wEW} \coloneqq \begin{bmatrix} 20 \ ft \\ 20 \ ft \end{bmatrix}$	
C.A.		RoofArea := 1496	ft ²
Dr		<i>FloorArea</i> := 1496	
CMathcad	WallPerimete	$er := (34 ft \cdot 2) + (44 ft \cdot 2)$	(2) = 156 ft
Weight of roof and walls		WallWeight := 20	psf
trib to roof		RoofWeight := 20	<i>psf</i>
S. S.		FloorWeight := 30	psf
$w \coloneqq \begin{bmatrix} FloorArea \cdot FloorWeight + \\ RoofArea \cdot RoofWeight + W \end{bmatrix}$	WallWeight• VallWeight•W	$WallPerimeter \cdot 9 ft \\ allPerimeter \cdot 4.5 ft \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	72.96 43.96 kip
Total seismic weight of	$W := \sum$	$\sum_{w}^{(w)} w = 116.92 \ kip$	
structure	(j=1	i	
	1	$w_{i} = 116.92 \ kip$	
		CO ₂	
		25	
		01	
		20	
		0	
		3	6
			3
			Of.
			03

H:\2022 JOBS\22054 Rossmoor TWCM Seismic Study 5 buildings\03 Engineering\3101 Terra grande\Building 5.mcdx

IDA	Date:09/19/2022Page:By:ACJob #:Project:3101 Terra GranadaPage 111	22054
Psuedo seismic force		
Psuedo seismic force per 4.4.2.1 Eq. 4-1 factor per 4.4.2.2	$V := C \cdot S_a \cdot W = 315 \ kip$	
factor per 4.4.2.2	$k := \mathbf{if}(T > 2.5, 2, \mathbf{if}(T \le 0.5, 1, 0.5 \cdot T +$	0.75)) = 1
$x := 1 \dots 2$		
$j := 1 \dots 2$ $Floors := 2$	····· L ^k	
Vertical distribution of	$F_{x} := \frac{w_{x} \cdot h_{x}^{k}}{\sum_{i=1}^{2} w_{i} \cdot h_{i}^{k}} \cdot V = \begin{bmatrix} 143\\172 \end{bmatrix} kip$	
psuedo seismic force per	$r_x = \frac{2}{\sum w + k^k} r - \lfloor 172 \rfloor mp$	
4.5.2.2 Eq 4-3a	$\sum_{i=1}^{N} w_i \cdot n_i$	
8		
	$V = \sum_{n=1}^{Floors} [315]$	
Story shear at story level j	$V_{j} \coloneqq \sum_{x=i}^{Floors} F_{x} = \begin{bmatrix} 315\\172 \end{bmatrix} kip$	
Pr		
Shear stress in shear walls	$v_{NS} := \frac{1}{M_s} \cdot \frac{V}{A_{WNS}} = \begin{bmatrix} 2502.83\\ 1367.78 \end{bmatrix} plf$	
in north south direction	$M_s A_{wNS} [1367.78]^{*}$	
J'	1 V [2503.06]	
Shear stress in shear walls	$v_{EW} \coloneqq \frac{1}{M_s} \cdot \frac{V}{A_{wEW}} = \begin{bmatrix} 3503.96\\ 1914.9 \end{bmatrix} plf$	
in east west direction		
	3	
Shear Stress exceeeds 1000 plf in both direc	tions	
	3	
Check 1-1 X6 LET-IN Diagonal Brace	- S	
	C.	
Consider half of the lateral load to be resiste	ed by Brace as shownin plan:	
Distance Bill	3	
	6	
	2	
	10	
	15	
e v v	10	
	3	
	Dr.	
AND TO THE LOCAL AND THE ADDRESS AND ADDRESS AND ADDRESS ADDRE		
A THE DEPENDENT B THE WAT AND	?	
1201 (1 * 1+0*		

H:\2022 JOBS\22054 Rossmoor TWCM Seismic Study 5 buildings\03 Engineering\3101 Terra grande\Building 5.mcdx